Physics 121, April 3, 2008.
Equilibrium and Simple Harmonic Motion.

• Course Information
• Topics to be discussed today:
 • Requirements for Equilibrium (a brief review)
 • Stress and Strain
 • Introduction to Harmonic Motion

• Homework set # 7 is due on Saturday morning, April 5, at 8.30 am. This assignment has two components:
 • WeBWorK (75%)
 • Video analysis (25%): you can calculate the angular momentum quickly by using the expression for the vector product in terms of the components of the individual vectors (the x and y components of the position and velocity of the puck).

• Homework set # 8 is now available. This assignment contains only WeBWorK questions and will be due on Saturday morning, April 12, at 8.30 am.

• Exam # 3 will take place on Tuesday April 22.
Comments on Homework # 7.
Rolling motion causes much confusion!

Two views of rolling motion: 1) Pure rotation around the instantaneous axis or 2) rotation and translation.

Note: friction provides the torque with respect to the center-of-mass.

Homework # 8.
Due: Saturday April 12, 2008.

All problems in this assignment are related to equilibrium. In all cases you need to identify all forces and torques that act on the system. Remember to choose the reference point in a smart way!
Physics 121.
Quiz lecture 20.

• The quiz today will have 3 questions!

Equilibrium (a quick review).

• An object is in equilibrium if the following conditions are met:

 Net force = 0 N (first condition for equilibrium). This implies \(p = \text{constant} \).

 and

 Net torque = 0 N \(\text{m} \) (second condition for equilibrium). This implies \(L = \text{constant} \).

• Conditions for static equilibrium:

 * \(p = 0 \) kg m/s
 * \(L = 0 \) kg m \(\text{m}^2/\text{s} \)

Equilibrium.
Summary of conditions (a quick review).

• Equilibrium in 3D:

\[
\sum F_x = 0 \quad \sum F_y = 0 \quad \sum F_z = 0
\]

\[
\sum \tau_x = 0 \quad \sum \tau_y = 0 \quad \sum \tau_z = 0
\]

• Equilibrium in 2D:

\[
\sum F_x = 0 \quad \sum F_y = 0
\]

\[
\sum \tau_x = 0
\]

Torque condition must be satisfied with respect to any reference point.
Stress and strain. The effect of applied forces.

• When we apply a force to an object that is kept fixed at one end, its dimensions can change.

• If the force is below a maximum value, the change in dimension is proportional to the applied force. This is called Hooke’s law:

$$F = k \Delta L$$

• This force region is called the elastic region.

Stress and strain. The effect of applied forces.

• When the applied force increases beyond the elastic limit, the material enters the plastic region.

• The elongation of the material depends not only on the applied force F, but also on the type of material, its length, and its cross-sectional area.

• In the plastic region, the material does not return to its original shape (length) when the applied force is removed.

Stress and strain. The effect of applied forces.

• The elongation ΔL can be specified as follows:

$$\Delta L = \frac{1}{E} \frac{F}{A} L_0$$

where

$E =$ Young’s modulus

$A =$ cross-sectional area

$F =$ force

$L_0 =$ original length

• Stress is defined as the force per unit area ($= F/A$).

• Strain is defined as the fractional change in length ($\Delta L/L_0$).

Note: the ratio of stress to strain is equal to the Young’s Modulus.
Stress and strain. A simple calculation could have prevented the death of 114 people.

And now something completely different!
Harmonic motion.

- We will continue our discussion of mechanics with the discussion of harmonic motion (simple and complex). This material is covered in Chapter 14 of our textbook.
- Chapter 14 will be the last Chapter included in the material covered on Exam #3 (which will cover Chapters 10, 11, 12, and 14).
- Note: We will not discuss the material discussed in Chapter 13 of the book, dealing with fluids, and this material will not be covered on our exams.

Harmonic motion.
Motion that repeats itself at regular intervals.

Simple harmonic motion.

\[x(t) = A \cos(\omega t + \phi) \]

- Phase Constant
- Amplitude
- Angular Frequency
Simple harmonic motion.

- Instead of the angular frequency ω the motion can also be described in terms of its period T or its frequency ν.

- The period T is the time required to complete one oscillation:

 \[x(t) = A \cos(\omega t + \phi) \]

 or

 \[A \cos(\omega t + \phi) = A \cos(\omega t + \omega T + \phi) \]

- In order for this to be true we must require $\omega T = 2\pi$. The period T is thus equal to $\frac{2\pi}{\omega}$.

- The frequency ν is the number of oscillations carried out per second ($\nu = \frac{1}{T}$). The unit of frequency is the Hertz (Hz).

- Per definition, $1 \text{ Hz} = 1 \text{ s}^{-1}$.

Simple harmonic motion.

- The frequency of the oscillation is the number of oscillations carried out per second:

 \[\nu = \frac{1}{T} \]

- The unit of frequency is the Hertz (Hz). Per definition, $1 \text{ Hz} = 1 \text{ s}^{-1}$.

Simple harmonic motion.

What forces are required?

- Consider we observe simple harmonic motion. The observation of the motion can be used to determine the nature of the force that generates this type of motion. In order to do this, we need to determine the acceleration of the object carrying out the harmonic motion:

 \[x(t) = A \cos(\omega t + \phi) \]

 \[v(t) = \frac{dx}{dt} = \frac{d}{dt} \left(A \cos(\omega t + \phi) \right) = -\omega A \sin(\omega t + \phi) \]

 \[a(t) = \frac{dv}{dt} = \frac{d}{dt} \left(-\omega A \sin(\omega t + \phi) \right) = -\omega^2 A \cos(\omega t + \phi) = -\omega^2 x(t) \]
Simple harmonic motion.
What forces are required?

- Using Newton’s second law we can determine the force responsible for the harmonic motion:
 \[F = ma = -m\omega^2 x \]

- A good example of a force that produces simple harmonic motion is the spring force: \(F = -kx \). The angular frequency depends on both the spring constant \(k \) and the mass \(m \):
 \[\omega = \sqrt{\frac{k}{m}} \]

We conclude:

Simple harmonic motion is the motion executed by a particle of mass \(m \), subject to a force \(F \) that is proportional to the displacement of the particle, but opposite in sign.

Any force that satisfies this criterion can produce simple harmonic motion. If more than one force is present, you need to examine the net force, and make sure that the net force is proportional to the displacements, but opposite in sign.
Simple harmonic motion. Total energy.

• During the motion of a block on a spring, there is a continuous conversion of energy:
 • The potential energy:
 \[U(t) = \frac{1}{2}kx^2 \cos^2(\omega t + \phi) \]
 • The kinetic energy:
 \[K(t) = \frac{1}{2}m(-x + \omega t)^2 \sin^2(\omega t + \phi) \]
 • The mechanical energy:
 \[E(t) = U(t) + K(t) = \frac{1}{2}kx^2 \sin^2(\omega t + \phi) \]

Since the mechanical energy is independent of time, we conclude that the mechanical energy of the system is constant!

If we know the total mechanical energy of the system, we can determine the region of oscillation. This region is constrained by the fact that the kinetic energy is always positive, and the potential energy is thus constrained by the mechanical energy (\(U \leq E \)).

Harmonic motion.

Let’s test our understanding of the basic aspects of harmonic motion by working on the following concept problems:

• Q20.1
• Q20.2
• Q20.3
Done for today!
Next week: more harmonic motion!

Mir Dreams Credit: STS-76 Crew, NASA