Physics 141.
Mechanics (Honors)

Frank L. H. Wolfs
Department of Physics and Astronomy
University of Rochester

What are we going to talk about today?
• Goals of the course
• Who am I?
• Who are you?
• Course information:
 • Text books
 • Lectures
 • Recitations
 • Homework
 • Laboratories
 • Exams
 • Diagnostic tests
 • Quizzes
• Units and Measurements
• Measurement Errors and Error Analysis

Goal of the course.
• Physics 141 is an introductory mechanics honors course for science and engineering majors.
• Course topics include motion (linear, rotational, and harmonic), forces, work, energy, conservation laws, and thermodynamics.
• I assume that you have some knowledge of calculus, but techniques will be reviewed when needed.
• I assume you have prior knowledge of physics, based on taking physics in high school.
Physics 141.
Who am I?

• I am Frank Wolfs.
• I am a professor in the Department of Physics and Astronomy.
• I am an experimental nuclear physicist. I have looked for the quark-gluon plasma (the state of matter that existed a few microseconds after the Big Bang) at Brookhaven National Laboratory on Long Island. Currently, I am looking for dark matter at the Sanford Underground Research Facility (SURF) in South Dakota.
• I consider teaching a very important component of my job, and will do whatever I can to ensure you succeed in this course.

Frank L. H. Wolfs
Department of Physics and Astronomy, University of Rochester, Lecture 01, Page 4

Physics 141.
Who are you?

Frank L. H. Wolfs
Department of Physics and Astronomy, University of Rochester, Lecture 01, Page 5

Physics 141.
Who are you?

Frank L. H. Wolfs
Department of Physics and Astronomy, University of Rochester, Lecture 01, Page 6
Physics 141.
Course Information.

- Text Books:
 - Recommended: P. Bevington and D. Robinson, Data Reduction and Error Analysis.

- PRS:
 - We will be using a Personal Response System in this course for in-class quizzes and concept tests.

Physics 141.
Course Components.

- Lecture:
 - Focus on the concepts of the material, and its connections to areas outside physics.
 - Not a recital of the text book!
 - The lecture presentation is interspersed with conceptual questions and quizzes, solved with and without help from your neighbors.

- Recitations/Workshops:
 - Small group meetings with a trained teaching assistant.
 - Review course materials and assignments.
 - Consistent attendance of recitations correlates with better grades.

Physics 141.
Course Components.

- Homework assignments:
 - Homework is assigned to practice the material covered in this course and to enhance your analytical problem solving skills.
 - You will need to struggle with the assignments to do well in this course.
 - You will need to make sure you fully understand the solution to these problems!

- Laboratories:
 - The laboratories give you hands-on experience with making measurements and interpreting data.
 - The laboratories are a required component of the course. No labs, no grade!
Physics 141.
Course Components.

• Exams:
 • The exams test you on your basic understanding of the material and your quantitative problem solving skills.
 • There will be 3 midterm exams and 1 final exam.
 • On each exam you will be provided with a formula sheet that lists all equations that are relevant for the material covered on the exam.
 • There is no need to memorize formulas; you need to focus on understanding how to use them and when to use them.

• Final grades:
 • Calculated in 4 different ways: the highest grade counts.
 • No grading on a curve: grade scale is fixed and known to you!

Frank L. H. Wolfs Department of Physics and Astronomy, University of Rochester, Lecture 01, Page 10

Physics 141.
Course Components.

- I am here to help you learn this material, but it is up to you to actually master it.
- If there is something you do not understand you need to ask for help. (come and talk, email, ask after class, etc.)
- It is my job to teach you ... you are paying my salary
- In lecture courses it is difficult to see who needs help. You need to ask for the help you need before you fall behind.

Your instructor.
Your instructor’s father.

Physics 141.
Course Components.

Dutch directness

The Dutch are renowned for being direct and straightforward in their dealings with others. This can sometimes cause discomfort for non-Dutch speakers, but it is important to understand that directness is an essential part of Dutch culture. Dutch people prefer to get to the point and avoid unnecessary niceties. This can be seen in conversations and interactions, where people are expected to be honest and clear in their communication. Directness is valued in the Dutch society and is an important aspect of their culture. It is important to be aware of this when interacting with Dutch people.

From KLM Holland Herald

Frank L. H. Wolfs Department of Physics and Astronomy, University of Rochester, Lecture 01, Page 11
Some examples of what is acceptable in Phy 141?

• Working together on homework assignments.
• Working together on the analysis of your lab experiments.
• Helping each other understanding difficult concepts of the course.
• Asking questions.
• Asking for help when you need help.

Some examples of what is NOT acceptable in Phy 141?

• Copying the homework solutions of another student and submitting it as your own.
• Copying the lab report of another student and submitting it as your own.
• Using the lab data collected by a different group.
• Cheating on exams.
• Bringing cell phones to exams.
• If in doubt, ask!

Cell phones will not be tolerated in Phy 141.

• There is no need for cell phones to pass Phy 141.
• If your cell phone rings when you meet with me during office hours, our meeting will be over.
• If your cell phone rings during lecture:
 • I will answer.
 • I will make sure that your phone will never rings again.
 • Do NOT challenge me!
AND NOW
SOMETHING COMPLETELY DIFFERENT: UNITS!

Making measurements.
Using units.

- Theories in physics are developed on the basis of experimental observations, or are tested by comparing predictions with the results of experiments.
- Being able to carry out experiments and understand their limitations is a critical part of physics or any experimental science.
- In every experiment you make errors; understanding what to do with these errors is required if you want to compare experiments and theories.

Making measurements.
Using units.

- In order to report the results of experiments, we need to agree on a system of units to be used.
- Only if all equipment is calibrated with respect to the same standard can we compare the results of different experiments.
- Although different units can be used to report different measurements, we need to know what units are used and how to do unit conversions.
- Using the wrong units can lead to expensive mistakes.

http://science.ksc.nasa.gov/tears/images.html
Making measurements.

Which mile? Which inch?

• If you use inches, which inches?
 - Swedish inches?
 - Dutch inches?
 - US inches?

• If you use miles, which miles?
 - Statute mile?
 - Nautical mile?
 - Scots mile?
 - Irish mile?

• Notes:
 - 1 nautical mile is 1/60° of a degree of latitude.
 - 1 nautical mile is 1,852 m.
 - 1 statute mile is 1,609 m.

Making measurements.

Using units.

• In this course we will use the SI System of units:
 - Length: meter
 - Time: second
 - Mass: kg

• The SI units are related to the units you use in your daily life:
 - Length: 1" = 2.54 cm = 0.0254 m
 - Conversion factors can be found in the front cover of the book.

The base units.

The unit of length: changes over time!

• One ten-millionth of the meridian line from the north pole to the equator that passes though Paris.

• Distance between 2 fine lines engraved near the ends of a Platinum-Iridium bar kept at the International Bureau of Weights and Measures in Paris.

• 1,650,763.73 Wavelengths of a particular orange-red light emitted by Krypton-86 in a gas discharge tube.

• Path length traveled by light in vacuum during a time interval of 1/299,792,458 of a second.
The base units.
Their current definitions.

- **TIME** - UNIT: SECOND (s)
 - One second is the time occupied by 919,263,170 vibrations of the light (of a specified wavelength) emitted by a Cesium-133 atom.

- **LENGTH** - UNIT: METER (m)
 - Path length traveled by light in vacuum during a time interval of 1/299,792,458 of a second.

- **MASS** - UNIT: KILOGRAM (kg)
 - One kilogram is the mass of a Platinum-Iridium cylinder kept at the International Bureau of Weights and Measures in Paris.

The base SI units.

The current standard of the kg and the old standard of the m.

Error Analysis.
Some (but certainly not all) important facts.

- Why should we care?
- Types of errors.
- The Gaussian distribution - not all results can be described in terms of such distribution, but most of them can.
- Estimate the parameters of the Gaussian distribution (the mean and the width).
- Error propagation.
- The weighted mean.

Note: Some of the following slides are based on the slides for a lab lecture, prepared by Prof. Manly of the Department of Physics and Astronomy.
Error Analysis.
Is statistics relevant to you personally?

Month 1 Month 2
Bush 42% 41%
Dukakis 40% 43%
Undecided 18% 16% ±4%

Headline: Dukakis surges past Bush in polls!

Error Analysis.
Is statistics relevant to you personally?

Global Warming

Analytical medical diagnostics

Effect of EM radiation

Error Analysis.
Type of Errors.

• Statistical errors:
 • Results from a random fluctuation in the process of measurement. Often quantifiable in terms of “number of measurements or trials”. Tends to make measurements less precise.

• Systematic errors:
 • Results from a bias in the observation due to observing conditions or apparatus or technique or analysis. Tend to make measurements less accurate.
The Gaussian distribution: the most common error distribution.

\[g(x) = \frac{1}{\sqrt{2\pi}\sigma} e^{-\frac{(x-\mu)^2}{2\sigma^2}} \]

1\(\sigma\) is roughly the half-width at half-maximum of the distribution.

Making measurements: increasing the number of measurements increases the accuracy.
Probability of a single measurement falling within ±1σ of the mean is 0.683.

Probability of a single measurement falling within ±2σ of the mean is 0.954.

Probability of a single measurement falling within ±3σ of the mean is 0.997.
Do you agree?

<table>
<thead>
<tr>
<th></th>
<th>Month 1</th>
<th>Month 2</th>
</tr>
</thead>
<tbody>
<tr>
<td>Bush</td>
<td>42%</td>
<td>41%</td>
</tr>
<tr>
<td>Dukakis</td>
<td>40%</td>
<td>43%</td>
</tr>
<tr>
<td>Undecided</td>
<td>18%</td>
<td>16%</td>
</tr>
</tbody>
</table>

Headline: Dukakis surges past Bush in polls!

Do you agree?

- The sampling error is ±5%.
- Do you agree with the conclusion of the article?

In the USA Today poll, Obama bests Clinton 47 to 44 percent among Democrats and independents who lean Democratic.

Done for today.

Next class: more about errors.

Credit: Brookhaven National Laboratory, NY, USA