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Physics 141.
Lecture 18.

1

Frank L. H. Wolfs Department of Physics and Astronomy, University of Rochester, Lecture 18, Page 2

Physics 141.
Lecture 18.

• Concept Test

• Topics to be discussed today:
• A quick review of rotational variables, kinetic energy, and torque.

• Rolling motion.

• Angular Momentum.
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Physics 141.
Laboratory # 5.
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Physics 141.
Course information.

• Homework # 7 is due on 
Friday November 10.

• Experiment # 5 will take 
place in Spurrier Gym on 
Monday November 13:
• Please take a 12 pack if you 

did not take one on Tuesday.
• Please remove the sparkling 

water.
• Please rinse the cans.
• Please bring all your cans to 

Spurrier Gym during your lab 
period on Monday November 
13.
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Rotational variables.
A quick review.

• The variables that are used to 
describe rotational motion are:

• Angular position θ

• Angular velocity ω = dθ/dt

• Angular acceleration α = dω/dt

• The rotational variables are 
related to the linear variables:

• Linear position l = Rθ

• Linear velocity v = Rω

• Linear acceleration a = Rα
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The moment of inertia.
A quick review.

• The kinetic energy of a rotation 
body is equal to

 where I is the moment of inertia.
• For discrete mass distributions I 

is defined  as

• For continuous mass distributions 
I is defined as

  
I = miri

2

i
∑

  
I = r 2dm∫

  
K =

1
2

Iω 2
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Parallel-axis theorem.
 A quick review.

• Calculating the moment of 
inertial with respect to a 
symmetry axis of the object is in 
general easy.

• It is much harder to calculate the 
moment of inertia with respect to 
an axis that is not a symmetry 
axis.

• However, we can make a hard 
problem easier by using the 
parallel-axis theorem:

Easy

HardIcm
I

  I = Icm + Mh2

7

Frank L. H. Wolfs Department of Physics and Astronomy, University of Rochester, Lecture 18, Page 8

Torque.
 A quick review.

• The torque τ of the force F is 
proportional to the angular 
acceleration of the rigid body:

τ = Iα 

• This equation looks similar to 
Newton’s second law for linear 
motion:

F = ma

• Note:
   linear motion rotational motion
   mass m moment I
   force F torque τ

A
r

φ

F

  

τ = r ×


F
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Torque.
 A quick review.

• The torque associated with a 
force is a vector.  It has a 
magnitude and a direction.

• The direction of the torque can be 
found by using the right-hand 
rule to evaluate r x F.

• The direction of the torque is the 
direction of the angular 
acceleration.

• For extended objects, the total 
torque is equal to the vector sum 
of the torque associated with each 
“component” of this object.
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Rolling motion.

• Rolling motion is a combination of 
translational and rotational motion.

• The kinetic energy of rolling motion 
has thus two contributions:
• Translational kinetic energy:

• Rotational kinetic energy:

• Assuming that the wheel does not 
slip we know that

  
Ktranslational =

1
2

Mvcm
2

  
Krotational =

1
2

Icmω
2

 
ω =

vcm

R
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Rolling motion.
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Rolling motion.

• Consider two objects of the same 
mass but different moments of 
inertia, released from rest from 
the top of an inclined plane:
• Both objects have the same initial 

mechanical energy (assuming 
their CM is located at the same 
height).

• At the bottom of the inclined 
plane they will have both 
rotational and translational kinetic 
energy.

• Which object will reach the 
bottom first?
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Rolling motion.
• Initial mechanical energy:

• Final mechanical energy:

• Assuming no slipping, we can rewrite 
the final mechanical energy as

• Conservation of energy implies:

 or The smaller Icm, the larger vcm
at the bottom of the incline.

 Ei = mgH

  
E f =

1
2

mvcm
2 + 1

2
Icmω

2

  
E f =

1
2

m+
Icm

R2

⎛

⎝⎜
⎞

⎠⎟
vcm

2

  

1
2

m+
Icm

R2

⎛

⎝⎜
⎞

⎠⎟
vcm

2 = mgH

  

1
2

1+
Icm

mR2

⎛

⎝⎜
⎞

⎠⎟
vcm

2 = gH
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2 Minute 19 Second Intermission. 

• Since paying attention for 1 hour 
and 15 minutes is hard when the 
topic is physics, let’s take a 2 
minute 19 second intermission.

• You can:
• Stretch out.
• Talk to your neighbors.
• Ask me a quick question.
• Enjoy the fantastic music.
• Solve a WeBWorK problem.
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Concept test lecture 18.
PollEv.com/frankwolfs050

• The concept test today will 
have five questions. 

• I will collect your answers 
electronically using the Poll 
Everywhere system.

• After submitting your 
answer, I will give you time 
to discuss the question with 
your neighbor(s) before 
submitting a new answer.
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How different is a world with rotational 
motion?

• Consider the loop-to-loop.  What 
height h is required to make it to 
the top of the loop?

• First consider the case without 
rotation:
• Initial mechanical energy = mgh.
• Minimum velocity at the top of 

the loop is determined by 
requiring that

    mv2/R > mg
 or
    v2 > gR
• The mechanical energy is satisfy 

the following condition:
    (1/2)mv2 + 2mgR > (5/2)mgR
• Conservation of energy requires
    h > (5/2)R

h R
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How different is a world with rotational 
motion?

• What changes when the object 
rotates?
• The minimum velocity at the top 

of the loop will not change.
• The minimum translational kinetic 

energy at the top of the loop will 
not change.

• But in addition to translational 
kinetic energy, there is now also 
rotational kinetic energy.

• The minimum mechanical energy 
is at the top of the loop has thus 
increased.

• The required minimum height 
must thus have increased.

• OK, let’s now calculate by how 
much the minimum height has 
increased. 

h R
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Note: without rotation h ≥ 25/10 R !!!

  
K f =

1
2

Iω 2 +
1
2

mv2 =
1
2

I
r 2 + m

⎛
⎝⎜

⎞
⎠⎟

v2

  
K f =

1
2

2
5

m + m
⎛
⎝⎜

⎞
⎠⎟

v2 =
7

10
mv2

How different is a world with rotational 
motion?

• The total kinetic energy at the top of 
the loop is equal to

• This expression can be rewritten as

• We now know the minimum 
mechanical energy required to reach 
this point and thus the minimum 
height:

h R

  
h ≥

27
10

R
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Angular momentum.
Definition.

• We have seen many similarities 
between the way in which we 
describe linear and rotational motion.

• Rotational motion can be treated in 
similar fashion as linear motion:

   linear motion rotational motion
   mass m moment I
   force F torque τ = r x F

• What is the equivalent to linear 
momentum?   Answer: angular 
momentum L = r x p.
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Angular momentum.
Definition.

• The angular momentum is 
defined as the vector product 
between the position vector and 
the linear momentum.

• Note:
• Compare this definition with the 

definition of the torque.
• Angular momentum is a vector.
• The unit of angular momentum is 

kg m2/s.
• The angular momentum depends 

on both the magnitude and the 
direction of the position and linear 
momentum vectors.

• Under certain circumstances the 
angular momentum of a system is 
conserved!
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Angular momentum.
 Circular motion.

• Consider an object carrying out 
circular motion.

• For this type of motion, the position 
vector will be perpendicular to the 
momentum vector.

• The magnitude of the angular 
momentum is equal to the product 
of the magnitude of the radius r and 
the linear momentum p:

L = mvr = mr2(v/r) = Iω

• Note: compare this with p = mv!
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Angular momentum.
Linear motion.

• An object does not need to carry 
out rotational motion to have an 
angular moment.

• Consider a particle P carrying out 
linear motion in the xy plane.

• The angular momentum of P 
(with respect to the origin) is 
equal to

 and will be constant (if the linear 
momentum is constant).

P

θ

p

r

y-axis

x-axis
r
⊥   


L = r × p = mrv sinθ ẑ =

= mvr⊥ ẑ = pr⊥ ẑ
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Conservation of angular momentum.

• Consider the change in the angular momentum of a particle:

• When the net torque is equal to 0 Nm:

• When we take the sum of all torques, the torques due to the 
internal forces cancel and the sum is equal to torque due to 
all external forces.

  

d

L

dt
=

d
dt
r × p( ) = m r ×

dv
dt

+
dr
dt

× v
⎛
⎝⎜

⎞
⎠⎟
= m r × a + v × v( ) =

= r × ma = r ×

F∑ =


τ∑

   


τ∑ = 0 =

d

L

dt
⇒

L = constant
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Done for today!

24


