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Introduction 
 

 In all branches of physical science and 
engineering one deals constantly with numbers 
which results more or less directly from 
experimental observations.  Experimental 
observations always have inaccuracies.  In using 
numbers that result from experimental 
observations, it is almost always necessary to 
know the extent of these inaccuracies.  If several 
measurements are used to compute a result, one 
must know how the inaccuracies of the individual 
observations contribute to the inaccuracy of the 
result.  If one is comparing a number based on a 
theoretical prediction with one based on 
experiment, it is necessary to know something 
about the accuracy of both of these if one is to say 
something intelligent about whether or not they 
agree. 
 

Systematic Errors 
 

 Systematic errors are errors associated with 
the particular instruments or techniques used to 
carry out the measurements.  Suppose we have a 
book that is 9" wide.  If we measure its width with 
a ruler whose first inch has previously been cut 
off, then the result of the measurement is most 
likely to be 10".  This is a systematic error.  If a 
thermometer immersed in boiling water at normal 
pressure reads 102°C, it is improperly calibrated.  
If readings from this thermometer are 
incorporated into experimental results, a 
systematic error results.  A voltage meter that is 
not properly "zeroed" introduces a systematic 
error. 
 An important point to be clear about is that a 
systematic error implies that all measurements in 
a set of data taken with the same instrument or 
technique are shifted in the same direction by the 

same amount.  Unfortunately, there is no 
consistent method by which systematic errors may 
be treated or analyzed.  Each experiment must in 
general be considered individually and it is often 
very difficult just to identify the possible sources, 
let alone estimate their magnitude, of the 
systematic errors.  Only an experimenter whose 
skills have come through long experience can 
consistently detect systematic errors and prevent 
or correct them. 
 

Random Errors 
 

 Random errors are produced by a large 
number of unpredictable and unknown variations 
in the experiment.  These can result from small 
errors in judgment on the part of the observer, 
such as in estimating tenths of the smallest scale 
division.  Other causes are unpredictable 
fluctuations in conditions, such as temperature, 
illumination, line voltage, any kind of mechanical 
vibration of the experimental equipment, etc.  It is 
found empirically that such random errors are 
frequently distributed according to a simple law.  
This makes it possible to use statistical methods to 
deal with random errors. 
 

Propagation of errors - Part I 
 

 If one uses various experimental observations 
to calculate a result, the result will be in error by 
an amount that depends on the errors made in the 
individual observations.  For example, suppose 
one wants to determine the area (A) of a sheet of 
paper by measuring its height (h) and its width 
(w): 
 
  A = h w  (1) 
 
Suppose that the measured height differs from the 
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actual height by ∆h, and the measured width 
differs from the actual width by ∆w (see Figure 
1). 
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Fig.1.  Propagation of errors in the 

measurement of area A 
 
In this case the calculated area will differ from the 
actual area A by ∆A, and ∆A will depend on ∆h 
and ∆w: 
 

  
!A = (w + !w)(h + !h) - A

= w h + h !w + w !h + !w !h - A
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The fractional error in A, which is defined as the 
ratio  of the error to the true value, can be easily 
obtained from equation (2): 
 

  !A

A
=
!w

w
+
!h

h
 (3) 

 
In this example, the fractional error in A depends 

only on the fractional errors in w and h.  
However, this is not true in general. 
 

Measurement Errors 
 

 If the errors in the measurements of w and h in 
the previous section were known, one could 
correct the observations and eliminate the errors.  
Ordinarily we do not know the errors exactly 
because errors usually occur randomly.  Often the 
distribution of errors in a set observations is 
known, but the error in each individual 
observation is not known. 
 Suppose one wants to make an accurate 
measurement of w and h to determine the area of 
the rectangle in Figure 1.  If we make several 
different measurements of the width, we will 
probably get several different results.  The mean 
of N measurements is defined as: 
 

 
  

w =
1

N
w

i!
i = 1

N

 (4) 

 
where wi is the result of measurement # i.  In the 
absence of systematic errors, the mean of the 
individual observations will approach w.  The 
deviation di for each individual measurement is 
defined as: 
 
  d

i
= w

i
- w  (5) 

 
The average deviation of the N measurements is 
always zero, and therefore is not a good measure 
of the spread of the measurements around the 
mean.  A quantity often used to characterize the 
spread or dispersion of the measurements is the 
standard deviation.  The standard deviation is 
usually symbolized by σ and is defined as: 
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The square of the standard deviation σ2 is called 
the variance of the distribution.  A small value of 
σ indicates a small error in the mean.  It can be 
shown that the error in the mean obtained 
from N measurements is unlikely to be greater 
than σ/N1/2.  Thus, as we would expect, more 
measurements result in a more reliable mean. 
 

The Gaussian Distribution 
 

 The Gaussian distribution plays a central 
role in error analysis since measurement errors are 
generally described by this distribution.  The 
Gaussian distribution is often referred to as the 
normal error function and errors distributed 
according to this distribution are said to be 
normally distributed.  The Gaussian distribution 
is a continuous, symmetric distribution whose 
density is given by: 
 

 
  

P(x) =
1

! 2"
exp -

x - µ
2

2 !
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 (7) 

 
The two parameters µ and σ2 are the mean and the 
variance of the distribution.  The function P(x) in 
equation (7) should be interpreted as follows: the 
probability that in a particular measurement the 
measured value lies between x and x+dx is 
P(x)dx.  The normalization factor in eq. (7) is 
chosen such that: 
 

 
  

P(x) dx = 1
-!

!

 (8) 

 
This relation is equivalent to stating that the 

probability that the result of a measurement lies 
between -∞ and ∞ is 1 (which is of course 
obvious). 
 The shape of the Gaussian distribution for 
various values of σ is shown in Figure 2.  A small 
value of σ obviously indicates that most 
measurements will be close to µ (small fractional 
error). 
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Fig.2.  The Gaussian distribution for various σ.  

The standard deviation determines the 
width of the distribution. 

 
In many applications the measurement errors are 
given in terms of the full width at half maximum 
(FWHM).  The FWHM of a Gaussian distribution 
is somewhat larger than σ: 
 
   FWHM = 2! 2 ln2 = 2.35 !  (9) 
 
The Gaussian distribution can be used to estimate 
the probability that a measurement will fall within 
specified limits. Suppose we want to compare the 
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result of a measurement with a theoretical 
prediction.  If the measurement technique has a 
variance σ2 the probability that the result of a 
measurement lies between µ - nσ and µ + nσ is 
given by: 
 

  

P(n) =
1

! 2"
exp -

x - µ
2

2!
2

µ - n!

µ + n!

 (10) 

 
The following table shows equation (9) evaluated 
for several values of n. 
 

n P(n) 
1 68.3 % 
2 95.4 % 
3 99.7 % 

 
For example, the oscillation period of a pendulum 
is measured to be 25.4 s ± 0.6 s.  Based on its 
length one predicts a period of 27.2 s.  The table 
shows that the probability on such a large 
difference between the measured and predicted 
value to be 0.3 %.  It is therefore very unlikely 
(although not impossible) that the large difference 
observed between the measured and predicted 
value is due to a random error. 
 

Propagation of Errors - Part II 
 

 The determination of the area A discussed in 
"Propagation of Errors - Part I" from its 
measured height and width was used to 
demonstrate the dependence of the error ∆A on 
the errors in measurements of the height and 
width.  The calculated error ∆A is an upper limit.  
In most measurements the errors in the individual 
observations are uncorrelated and normally 
distributed.  The probability that the errors in the 

measurement of the width and the height 
collaborate to produce an error in A as large as 
∆A is small. 
 The theory of statistics can be used to 
calculate the variance of a quantity that is 
calculated from several observed quantities.  
Suppose that the quantity Q depends on the 
observed quantities a, b, c, ... : 
 
  Q = f(a,b,c,...)  (11) 
 
Assume σa2, σb2, σc2, etc. are the variances in the 
observed quantities a, b, c, etc.  The variance in Q, 
σQ

2, can be obtained as follows: 
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Applying this formula to the measurement of the 
area A, the standard deviation in A is calculated to 
be: 
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The fractional standard deviation in A can be 
easily obtained from equation 13: 
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Example:  Propagation of Errors 
 
Suppose we want to calculate the force F using 
the following relation: 
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The following values have been obtained for m, R 
and T: 
 
 m = 0.1400 ± 0.0001 kg 
 R = 0.0513 ± 0.0001 m 
 T = 0.200 ± 0.001 s 
 
What is the calculated force F, and what is its 
standard deviation? 
 
The force F can be easily calculated:  F = 7.09 N.  
The standard deviation of the force can be 
obtained using the following formula: 

 
  

!
F

=
!F

!m

2

!
m

2
+
!F

!R

2

!
R

2
+
!F

!T

2

!
T

2  

 
Differentiating the formula for F we obtain: 
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Substituting these expressions in the formula for 
the standard deviation, we obtain: 
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Substituting the numbers into this equation, we 
obtain the following value for the standard 
deviation: 

 
 σF = 0.07 N 

 
The final answer is therefore: 

 
 F = 7.09 ± 0.07 N 

 
 

Example:  Measuring a spring constant 
 
 A spring was purchased.  According to the 
manufacturer, the spring constant k of this spring 
equals 0.103 N/cm.  For a spring, the following 
relation holds: F = k x, where F is the force 
applied to one end of the spring and x is the 
elongation of the spring.  A series of 
measurements is carried out to determine the 
actual spring constant.  The results of the 
measurements are shown in Figure 3 and in Table 
1. 
 Since F/x = k, the last column in Table 1 

F (N) x (cm) F/x (N/cm) 
1.0 9.7 0.103 
2.0 21.3 0.094 
3.0 28.8 0.104 
4.0 44.9 0.089 
5.0 51.5 0.097 

 
Table 1. Results of a series of measurements of 

the spring constant. 
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shows the measured spring constant k.  Since k is 
independent of F and x, our best estimate for k 
will be the average of the values shown in the last 
column of Table 1: 

 
 k = 0.098 N/cm 

 
Figure 4 shows the ratio of F and x as a function 
of the applied force F.  The solid line shows the 
calculated spring constant of 0.098 N/cm. 
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Fig.3. Measured displacement x as a function of 

the applied force F.  The line shows the 
theoretical correlation between x and F, 
with a spring constant obtained in the 
analysis presented below. 

 
 The standard deviation of the measured spring 
constant can be easily calculated: 

 
 σk = 0.006 N/cm 

 
Statistical theory tells us that the error in the mean 
(the quantity of interest) is not likely to be greater 
than σ/N1/2.  In this case, N = 5, and the error in k 
is unlikely to be larger than 0.003 N/cm.  The 
difference between the measured spring constant 
and the spring constant specified of the 
manufacturer is 0.005 N/cm, and it is therefore 

reasonable to suspect that the spring does not 
meet its specifications. 
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Fig.4. Calculated ration of F and x as a function 

of the applied force F.  The line shows the 
average spring constant obtained from 
these measurements. 

 
 The standard deviation of the measured spring 
constant can be easily calculated: 

 
 σk = 0.006 N/cm 

 
Statistical theory tells us that the error in the mean 
(the quantity of interest) is not likely to be greater 
than σ/N1/2.  In this case, N = 5, and the error in k 
is unlikely to be larger than 0.003 N/cm.  The 
difference between the measured spring constant 
and the spring constant specified of the 
manufacturer is 0.005 N/cm, and it is therefore 
reasonable to suspect that the spring does not 
meet its specifications. 
 

Weighted mean 
 
 The calculation of the mean discussed so far 
assumes that the standard deviation of each 
individual measurement is the same.  This is a 
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correct assumption if the same technique is used 
to measure the same parameter repeatedly.  
However, in many applications it is necessary to 
calculate the mean for a set of data with different 
individual errors.  Consider for example the 
measurement of the spring constant discussed in 
the previous Section.  Suppose the standard 
deviation in the measurement of the force is 0.25 
N and the standard deviation in the measurement 
of the elongation is 2.5 cm.  The error in the 
calculated spring constant k is equal to: 
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For the first data point (F = 1.0 N and x = 9.7 cm) 
the standard deviation of k is equal to 0.037 N/cm.  
For the last data point (F = 5.0 N and x = 51.5 cm) 
the standard deviation of k is equal to 0.007 N/cm.  
We observe that there is a substantial difference in 
the standard deviation of k obtained from the first 
and from the last measurement.  Clearly, the last 
measurement should be given more weight when 
the mean value of k is calculated.  This can also 
be illustrated by looking at a graph of the 
measured elongation x as a function of the applied 
force F (see Figure 5).  The theoretical relation 
between x and F predicts that these two quantities 
have a linear relation (and that x = 0 m when F = 
0 N).  The data points shown in Figure 5 have 
error bars that are equal to ± 1σ.  The dotted lines 
in Figure 5 illustrate the range of slopes that 
produces a linear relation between x and F that 
does not deviate from the first data point by more 
than 1 standard deviation.  The solid lines 
illustrate the range of slopes that produces a linear 
relation between x and F that does not deviate 
from the last data point by more than 1 standard 
deviation.  Obviously, the limits imposed on the 
slope (and thus the spring constant k) by the first 

data point are less stringent than the limits 
imposed by the last data point, and consequently 
more weight should be given to the last data point. 
 The correct way of taking the weighted mean 
of a number of values is to calculate a weighting 
factor wi for each measurement.  The weighting 
factor wi is equal to 
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where σi is the standard deviation of measurement 
# i.  The weighted mean of N independent 
measurements yi is then equal to 
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where yi is the result of measurement # i.  The 
standard deviation of the weighted mean is equal 
to 
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Fig.5. Measured elongation x as a function of 
applied force F.  The various lines 
shown in this Figures are discussed in 
the text. 
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For the measurement of the spring constant we 
obtain: 

 
 k = 0.095 N/cm 

 
and 

 
 σk = 0.004 N/cm 

 
The results obtained in this manner are slightly 
different from those obtained in the previous 
section.  The disagreement between the measured 
and quoted spring constant has increased. 
 
 


