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Figure S1.1 Molecules in a gas.
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Figure $1.2 Molecules in a liquid.

OBJECTIVES

After studying this supplement, you should be able to

= Determine the flow rate of a gas through a hole, given microscopic
information about the gas

= Determine the change in temperature and pressure of a gas undergoing
compression or expansion

= Determine the efficiency of a heat engine

S1.1 GASES, SOLIDS, AND LIQUIDS

In contrast to a solid, a gas has no fixed structure. The gas molecules are
not bound to each other but move around very freely, which is why a gas
does not have a well-defined shape of its own; it fills whatever container you
put it in (Figure S1.1). Think, for example, of the constantly shifting shape of a
cloud, or the deformability of a balloon, in contrast with the rigidity of a block
of aluminum. On average, gas molecules are sufficiently far apart that most of
the time they hardly interact with each other. This low level of interaction is
what makes it feasible to model a gas in some detail, using relatively simple
concepts.

In a gas the molecular motion must be sufficiently violent that molecules
can’t stay stuck together. At high enough temperatures, any molecules that
do manage to bind to each other temporarily soon get knocked apart again
by high-speed collisions with other molecules. However, at a low enough
temperature, molecules move sufficiently slowly that collisions are no longer
violent enough to break intermolecular bonds. Rather, more and more
molecules stick to each other in a growing mass as the gas turns into a liquid
or, at still lower temperatures, a solid.

Liquids Are More Complex

A liquid is intermediate between a solid and a gas. The molecules in a liquid
are sufficiently attracted to each other that the liquid doesn’t fly apart like a
gas (Figure S1.2), yet the attraction is not strong enough to keep each molecule
near a fixed equilibrium position as in a solid. The molecules in a liquid can
slide past each other, giving liquids their special property of fluid flow (unlike
solids) with fixed volume (unlike gases).

The analysis of liquids in terms of atomic, microscopic models is quite
difficult compared with gases, where the molecules only rarely come in
contact with other atoms, or compared with solids, where the atoms never
move very far away from their equilibrium positions. For this reason, in
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Figure S1.3 Side view of molecules all
traveling to the right with speed v inside a
tube. There are n molecules per cubic
meter inside the tube.
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Figure S1.4 End view of molecules all
traveling the same direction in a tube of
cross-sectional area A.

this introductory textbook with its emphasis on atomic-level description and
analysis we concentrate mostly on understanding gases and solids.

An active field of research, called “molecular dynamics,” models liquids,
gases, and solids by computational modeling using the Momentum Principle
and appropriate forces between the molecules. The difference between this
work and the computational models you have made is that sophisticated
programming techniques are required to deal with very large numbers of
molecules, sometimes as many as a million, in a reasonable amount
of computer time.

S1.2 GAS LEAKS THROUGH A HOLE

In Chapter 12 we used statistical mechanics to determine the average speed
of a gas molecule. Here we’ll see some interesting phenomena in which the
average speed plays a role. We will model the gas molecules as little balls that
don’t attract each other and interact only in brief elastic collisions.

We will frequently use the symbol n = N/V to stand for the number of gas
molecules per unit volume, which we will express in SI units as number per
cubic meter:

NUMBER DENSITY: NUMBER PER CUBIC METER
N
Definition: n = —
efinition: n v

N is the number of gas molecules in the volume V. The units of n are
molecules per cubic meter.

Warning: You may be familiar from chemistry with the ideal gas law written in
the form PV = nRT, where n is the number of moles. Here n means something
else—the number of molecules per cubic meter, N/V.

n at Standard Temperature and Pressure

Standard Temperature and Pressure (or STP) is defined for a gas to be
0 °C = 273 K and the average air pressure at sea level. Under STP
conditions the ideal gas law can be used to show that one mole of a gas will
occupy a volume of 22.4 liters = 22.4 x 10° cm?® = 22.4 x 10~3 m>. What is
the number density # of a gas at STP?

023

One mole consists of 6.02 x 10> molecules, so

~6.02x 102 molecules
T 224x1073m3
—2.68 x 10% molecules/m’

One-Directional Gas

We will calculate the leakage rate of a gas through a small hole in a container
filled with the gas. First we’ll consider a simplified one-directional example,
in order to understand the basic issues before stating the results for a real
three-dimensional gas.

The chain of reasoning that we follow is basically geometric. Consider a
situation in which many gas molecules are all traveling to the right inside a
tube. For the moment, temporarily assume that they all have the same speed v
(Figure S1.3). The cross-sectional area of the tube is A (Figure S1.4).
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Figure S1.5 A molecule that will leave the
tube in a time Af must be within a distance
v At from the end.
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Figure S1.6 Volume containing the
molecules that will leave the tube in
time At.
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Because eventually we want to be able to calculate how fast a gas will leak
through a hole in a container, we will calculate how many molecules leave this
tube in a short time interval Ar. For a molecule that is traveling at speed v to be
able to reach the right end of the tube in this time interval A¢, it must be within
a distance vAt of the end (Figure S1.5).

Since the cross-sectional area of the tube is A , the volume V of the tube that
contains just those molecules that will leave the tube during the time interval
At is simply A(vAt); see Figure S1.6.

There are n molecules per m? inside the tube, and N = nV molecules inside
the volume V. So the number N of molecules that will leave in the time interval
Atis

N =nV =n(AvAr)

Dividing by the time interval A¢, we find the following result:
number of molecules crossing area A per second = nAv

This is for the one-directional case; all molecules have the same speed.

QUESTION Does this equation make sense? What would you
expect if you increased the number of molecules per cubic meter,
or the cross-sectional area, or the speed?

The equation does make sense. The more molecules per unit volume (n =
N/V), the more molecules will reach the right end of the tube per unit time. The
bigger the cross-sectional area (A), the more molecules that will pass through
that area per unit time. The faster the molecules are moving (v), the more
molecules from farther away that can reach the end of the tube in a given time
interval. The units are right: (molecules/m?®)(m?)(m/s) = molecules/s.

Effect of Different Speeds

We need to account for the fact that the gas molecules don’t all have the
same speed v. Suppose that n; molecules per unit volume have speeds of
approximately v, n, molecules per unit volume have speeds of approximately
v, and so on. The number of molecules crossing an area A per second is

nmAvL+nyAvy +---

The average speed of all the molecules is by definition the following, where we
weight each different speed by the number of molecules per cubic meter that
have that approximate speed:

nmvi+nyvy+---
n

V:

Therefore,
nmAvy+nAvy +--- = nAv
A horizontal bar over a symbol is a standard notation for “average,” and v
means average speed.
Finally, we have a valid equation for the number of molecules in a

one-directional flow leaving the right end of the tube, even in the situation
where they have a distribution of different speeds:

NUMBER OF MOLECULES CROSSING AREA A PER SECOND
(ONE-DIRECTIONAL)
1-D flow rate = nAv

This is for one-directional flow; molecules have various speeds.
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A “one-directional” gas may sound a bit silly, but this equation does apply
to real one-directional flows such as the flow of water or gas through a pipe or
the flow of electrons through a copper wire in an electric circuit.

A Three-Dimensional Gas

A more realistic model of a gas in a closed container would have approximately
equal numbers of molecules heading to the left as well as to the right in the
tube, in which case the number of molecules leaving the right end of the tube
would be only %nAV. In a real three-dimensional gas, molecules are moving in
all directions. Only those molecules that are headed in the +x direction can
pass through a hole located to the right, not those moving in the —x direction
or in the +y or £z directions. The molecules are headed randomly in all six
directions, so we might expect our equation would have a factor of 1/6.

However, the actual factor is 1/4, which comes from detailed averaging
over all directions and is related to our use of the average speed (magnitude of
velocity), rather than averages of velocity components v, or v, or v.. We don’t
want to get bogged down in the rather heavyweight mathematics required to
prove this, so we just state that the factor is 1/4 rather than 1/6. (You can find
a full derivation in books on statistical mechanics.)

NUMBER OF MOLECULES CROSSING AREA A PER SECOND
(THREE-DIMENSIONAL)

3-D flow rate = %nAT/

This is for three-dimensional flow; molecules have various velocities.

Leak Through a Hole in a Balloon

At standard temperature and pressure, at what rate will helium escape
from a balloon through a hole 1 mm in diameter? As we saw in Chapter 12,
the average speed v of helium atoms at ordinary temperatures is about
1200 m/s.

Earlier we calculated that at STP n = 2.68 x 10> molecules per cubic meter.
Therefore the leak rate is

0 molecules

11 -3 _\2
A= (2.68 1 s ) (w(o.s %1073 m) ) (1200 m/s)

= 6.3 x 10*! molecules/s; about 0.01 moles/s

Cooling of the Gas

There is an interesting and important effect of gas escaping through a hole. If
you look back over the derivations of the equations, you can see that faster
molecules escape disproportionately to their numbers. Faster molecules can be
farther away from the hole than is true for slower molecules and still escape
through the hole in the next short time interval. As a result, the distribution
of speeds of molecules inside the container becomes somewhat depleted of
high speeds.

Checkpoint 1 What can you say about the temperature of the gas inside
the container as the gas escapes? Why?
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Leakage from a Balloon

A party balloon filled with helium is about one foot in diameter (about
30 cm). The volume of a sphere is %wr3, where r is the radius of the sphere.
In the previous example we calculated that the initial leak rate through a

circular hole 1 mm in diameter is 6.3 x 102! molecules/s. (a) If the helium
were to escape at a constant rate equal to the initial rate, about how long

would it take for all the helium to leak out? (b) As the helium escapes, the
balloon shrinks, and the number of helium atoms per cubic meter n will
stay roughly constant, in which case our analysis is pretty good. However,
remember that the temperature of the gas drops due to a preferential loss
of high-speed atoms. Would this effect make the amount of time to empty
be more or less than the value you calculated in part (a)?

(a) The leak rate was 6.3 x 10?! atoms per second. Calculate the number of
helium atoms in the balloon originally:

6x 105 atoms) (1 x 10%cm3

4 3 24
§7r(0.3 m) <22'4 NETE ) =3 x 10" atoms

m3
Assuming a constant rate:

3 x 102 atoms

=500
6.3 x 102! atoms/s °

(b) With the preferential loss of high-speed atoms, the speed distribution inside
the balloon shifts to lower speeds (corresponding to a lower temperature).
If the average speed is lower, the leak rate is lower, and it should take longer
for the balloon to empty than we calculated in part (a), where we assumed a
constant leak rate.

We've implicitly done the analysis in vacuum. If the balloon is in air, air
molecules enter the balloon through the same hole.

When you blow up an ordinary rubber balloon the pressure is higher
than one atmosphere, which means higher number density »n but also a
correspondingly higher leak rate, which is proportional to n. To a first
approximation the density doesn’t matter in this estimate of the time to empty.
Also note that often when you puncture a balloon the balloon rips, creating a
large opening; this is not the case we are considering.

Checkpoint 2 A spacecraft containing air at STP is struck by a micrometeor
that makes a hole 2 mm in diameter. Calculate the initial rate at which air
escapes through the hole, in number of air molecules leaving the spacecraft
per second. In Chapter 12 we found that the average speed of air molecules
at STP is about 500 m/s.

S1.3 MEAN FREE PATH

Suppose that we place a special molecule somewhere in the helium gas, one
whose movements we can trace. For example, it might be a molecule of
perfume. On average, how far does this molecule go before it runs into a
molecule of the gas? The average distance between collisions is called the
“mean free path.” It plays an important role in many phenomena, including
the creation of electric sparks in air (discussed in Volume II of this textbook).

An approximate calculation of the mean free path depends on a simple
geometrical argument. Draw a cylinder along the direction of motion of the
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Figure S1.7 If a “special molecule” (blue)
enters a cylinder of length d and radius
R+ r, it will collide with a gas molecule

(green).

Figure $1.8 End view of cylinder.
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Figure S1.9 The volume of air occupied on
average by one molecule.

special molecule, with length d and radius R + r, where R is the radius of the
molecule, and r is the radius of a gas molecule, as shown in Figure S1.7 and
Figure S1.8.

The geometrical significance of this cylinder is that if the path of the special
molecule comes within one molecular radius of a gas molecule, there will be a
collision, so any gas molecule whose center is inside the cylinder will be hit.
How long should the cylinder be for there to be a collision?

We define d to be the average distance the special molecule will travel
before colliding with another molecule, so the cylinder drawn in Figure S1.7
should contain on average about one gas molecule. The cross-sectional area of
the cylinder is A ~ (R +r)? and the volume of the cylinder is Ad. If n stands
for the number of gas molecules per cubic meter, we can write an equation
involving the mean free path:

MEAN FREE PATH
~ L
T nA
A ~ (R +r)?; see Figure S1.7.

We are ignoring some subtle effects in this calculation, but this analysis gives
us the main picture: the mean free path is shorter for higher density or larger
molecular size.

Mean Free Path in Air

To get an idea of the order of magnitude of a typical mean free path, assume
that an N, molecule in the air has a radius of approximately 2 x 10~ m
(the radius of one of the N, atoms being about 1 x 10~1° m), and calculate
approximately the mean free path d of an N, molecule moving through air.

=268 % 107 molecules

m3
~m(2x2x1071m)? =5 %107 m?
“nA” molecules B
2.68 x 1025 ———— ) (5 x 10~ 19 m?)
m3
d~7x10"%m

Checkpoint 3 It is interesting to compare the mean free path of about
7% 1078 m to the average spacing L between air molecules, which is the
cube root of the volume occupied on average by one molecule (Figure S1.9).
Calculate L. You may be surprised to find that the mean free path d is
much larger than the average molecular spacing L. The molecules represent
rather small targets.

S1.4 PRESSURE AND TEMPERATURE

We can use statistical ideas to relate what we know about the motion of
molecules in a gas to the pressure that the gas exerts on its container. We'll
consider a closed container, with the energy of the gas not changing.

In a party balloon, helium atoms are continually hitting the rubber walls of
the balloon. In an earlier example we found that at STP (standard temperature
and pressure) about 6 x 10?1 helium atoms per second escape through a
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Figure S1.10 On average, an atom bounces
off the wall without changing speed.
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l-mm-diameter section of the balloon. That means that in a closed container
6 x 10?! helium atoms per second strike every l-mm-diameter portion of the
container’s walls.

The time- and space-averaged effect of this bombardment is an average
force exerted on every square millimeter of the container. This average force
per unit area is called the “pressure” P and is measured in N/m?, also called
a “pascal.” We are going to calculate how big the pressure is in terms of
the average speed of the helium atoms, thus building a link between the
microscopic behavior of the helium atoms and the macroscopic time- and
space-averaged pressure.

On average, a helium atom bounces off the wall with no change of kinetic
energy. We emphasize that this is the average behavior. Any individual atom
may happen to gain or lose energy in the collision with a vibrating atom in the
container wall, but if the container is not being warmed up or cooled down,
the velocity distribution in the gas does not change, and on average the helium
atoms rebound from the wall with the same kinetic energy they had just before
hitting the wall (Figure S1.10).

QUESTION If the kinetic energy doesn’t change when an atom
bounces off the wall, is there any change in the atom’s momentum?

Unlike speed or kinetic energy, momentum is a vector quantity, and there is a
large change in the x component of momentum, from +p, to —p,. (There is no
change in the y component.) Therefore the momentum change of the helium
atom is Apx,helium = —2px.

QUESTION What caused this change in the momentum of the
helium atom?

A force is required to change the momentum of an object. In this case the force
was applied by the wall of the container (or in more detail, by an atom in the
wall of the container). By the principle of reciprocity (Newton’s third law), the
helium atom must have applied an equal and opposite force to the wall (or
more precisely, to an atom in the wall of the container). Therefore the wall
must have acquired an amount of momentum Ap, wan = 2px.

If we could calculate the average time At between collisions of helium
atoms with a small area A of the wall, we could express the pressure (force
per unit area) as follows, since dp/dt = F

_F _1Ap,
A A At

Assuming One Direction and One Speed

We already know that if there are n; helium atoms per unit volume that have
an x component of velocity equal to v, > 0 (that is, moving in the +x direction
toward the wall), the number of such atoms that hit an area A of the wall in a
time At is ny AvAt. Therefore the average time between collisions is

At=1/(nyAvy)
and we find

1 Apy

F 2
PATAy e ey

m

nyAvy
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An Alternative Argument

Alternatively, we can say that n; Av, helium atoms with this x component
of velocity hit the area A every second, and each of them delivers 2p, of
momentum to the wall, so that the total momentum transfer to the wall per
second is

(number of hits per second) (momentum transfer per hit) = (n Av,)(2py)

Divide by A to get the force per unit area, and you again get

p2
P=(nyvy)(2px) = 2”+Ex

Taking the Velocity Distribution into Account

Actually, this is just the contribution to the pressure made by those atoms that
happened to have this particular value of v, > 0. On average, only half the
atoms are headed in the +x direction, so we replace ny by n/2, where n is the
number of atoms per cubic meter (going in either the +x or —x direction).

2 2
P:2n+& —nbx
m m

We also need to average over the slow and fast atoms:

2

p=nPx

m
We'll explain what we mean by this average. Suppose that n; atoms per unit
volume have x components of momentum of approximately p,, n atoms per
unit volume have x components of momentum of approximately p,», and so

on. The pressure is
2 2
m m

The average value of p2 for all the atoms is by definition the following, where
we weight each different value of p2 by the number of atoms per cubic meter
that have that approximate value:

p?

n

so we have nyp2, +nyp2, + - = np2. Therefore we can write this:

2 2 2
P=n <l;21> +np (?f)%-:nl:;l‘

Taking Direction into Account

We can re-express the pressure in terms of the magnitude of momentum p
rather than p, by the following steps:

First, note that p = , /p2 +p§ +p2, or p?=p? +P§ +P%-

Second, since the atoms are flying around in random directions,
there should be no difference in averaging in the x, y, or z direction,

50 p2 = Py = p2, which implies that p2 = 3p2.



S1.4 Pressure and Temperature S1-9

—

Taking these factors into account, instead of P = nP% we can write the following
m

important result:

GAS PRESSURE IN TERMS OF ATOMIC QUANTITIES
1 p?
P=-n—
3 " m

QUESTION Look back over the line of reasoning that led us to this

result, and reflect on the nature of the argument. Stripped of the
details, try to summarize the major steps leading to this result.

We reached this result by combining two effects: the number of molecules
hitting an area per second is proportional to v, and the momentum transfer
is also proportional to v. Hence the force per unit area is proportional to v2.

We derived the pressure by considering the effects of molecules hitting the
walls, but the result applies throughout the gas, since if you put some object
anywhere in the gas it will experience this same pressure.

The Ideal Gas Law

Itis useful to rewrite our result for the pressure, factoring out the term ?/ (2m),
which is the average translational kinetic energy Kirans of a molecule of mass m:

2 (P2 2 —
P= gn <2prn> = gnKtrans

The pressure of a gas is proportional to the number density (number of
molecules per cubic meter, N/V), and proportional to the average translational
kinetic energy of the gas molecules. This gives us a connection to temperature,
because we found in Chapter 12 that Krans = 3k57.

Substituting into the pressure equation, P = %nftrans = %n(%kB T)=nkgT,
which relates pressure to temperature and is called the ideal gas law:

MICROSCOPIC VERSION OF THE IDEAL GAS LAW

P= nkBT

Checkpoint 4 We found that at STP, n = 2.68 x 10% molecules per m>.
Calculate the value of one atmosphere of pressure in units of N/m?.

The Macroscopic Ideal Gas Law

We can compare our microscopic version of the gas law with experiments
that measure the macroscopic properties of gases. For gases with fairly low
densities, measurements of the pressure for all gases (helium, oxygen, nitrogen,
carbon dioxide, etc.) are well summarized by the macroscopic ideal gas law,
which is probably familiar to you from chemistry, and which describes the
observed behavior of any low-density gas:

MACROSCOPIC VERSION OF THE IDEAL GAS LAW
PV = (number of moles)RT
R is the “gas constant” (8.3 J/K/mole).
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To compare with our microscopic prediction, we can convert this macroscopic
version of the ideal gas law to a version involving microscopic quantities:

_ (number of moles)RT

%
(number of molecules) N

(6.02 x 1023 molecules/mole) T 6.02x 105

P

number of moles =

where N is the number of molecules in the gas. Therefore we have

p_(_ N \RT_(NN(__ R\,
“\e2x10%) v ~\V)\602x107

This is simply P = nkgT, where n = N/V and R/6.02 x 10? is the Boltzmann
constant kp:

R 8.3J/K/mole

= = — -23
~6.02x 103 6.02 x 1023 molecules/mole 1.38 x107J/K

kg

Warning about the Meaning of n

Sometimes the ideal gas law is written in the form PV = nRT, where n is the
number of moles rather than the number of molecules per cubic meter, n =
N/V. On the rare occasions when we need to refer to the number of moles,
we’ll write it out as “number of moles.”

Temperature from Entropy or from the Ideal Gas Law

In Chapter 12 we found the relationship Kians = %kB T, based on the
Boltzmann distribution as applied to a low-density gas. The Boltzmann
distribution in turn was based on the statistical mechanics definition of
temperature in terms of entropy as 1/7 = dS/dE.

When we inserted Kirans = %kB T into the kinetic theory result for pressure,
P= %n(p2 /m), we obtained the molecular version of the ideal gas law, P =
nkgT, which we showed was equivalent to the macroscopic version of the ideal
gas law, P = (number of moles)RT/V.

Low-density gases are described well by the ideal gas law, and for that
reason gases are used to make accurate thermometers. You measure the
pressure P and volume V of a known number of moles of a low-density gas
and determine the temperature from the macroscopic gas law:

PV

= (number of moles) R (gas thermometer)

The fact that we could start from 1/7 = dS/dE and derive the ideal gas law
proves that the temperature measured by a gas thermometer is exactly the same
as the “thermodynamic temperature” defined in terms of entropy.

Real Gases

Our analysis works well for low-density gases. For high-density gases, there
are two major complications. First, the molecules themselves take up a
considerable fraction of the space, so the effective volume is less than the
geometrical volume, and V' in the gas law must be replaced by a smaller value.

Second, at high densities the short-range electric forces between molecules
have some effect. In this context these intermolecular forces are called “van
der Waals” forces, which are the gradient of the interatomic potential energy
discussed in Chapter 7 In a low-density gas almost all of the energy is kinetic
energy, but in a high-density gas some of the energy goes into configurational
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Figure S1.13 The force due to gas pressure
on the top of the box differs slightly from
the force on the bottom of the box.
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energy associated with the interatomic potential energy. The effect is that in
the gas law P must be replaced by a smaller value.

When these two effects are taken into effect, the resulting “van der Waals”
equation fits the experimental data quite well for all densities of a gas, although
the corrections are different for different gases due to differences in molecular
sizes and intermolecular forces.

Energy of a Diatomic Gas

The equation for the average translational kinetic energy Kirans = %kBTis valid
even for a gas with multiatom molecules such as nitrogen (N,) or oxygen (O,).
However, as you will recall from Chapter 9, this translational kinetic energy
is only a part of the total energy of the molecule. In addition to translational
energy, a diatomic molecule can have rotational and vibrational energy relative
to the center of mass (Figure S1.11), so the energy contains additional terms.
We write the energy of a diatomic molecule in the following way:

Kirans + Evib + Erot + Mgycm

The key point, as we discussed in Chapter 12, is that the average energy
of a diatomic molecule is greater than the average energy of an atom in a
monatomic gas at the same temperature. For a monatomic gas such as helium
the average total energy per molecule is just Kirans = %kB T.

Application: Weight of a Gas in a Box

In Chapter 12 we used the Boltzmann factor to find the number density as a
function of height, n oc e="¢"/%8T  From this we can determine the pressure
as a function of height, which makes it possible to understand something that
otherwise might be rather odd about weighing a box that contains a gas (Figure
S1.12). Let’s do the weighing in a vacuum so we don’t have to worry about
buoyancy forces due to surrounding air. The box definitely weighs more on the
scales if there is gas in it than if there is a vacuum in it. In fact, if the mass of
the gas is M, the additional weight is Mg, because the Momentum Principle for
multiparticle systems refers to the net force on a system, and the gravitational
contribution to the net force is the sum of the gravitational forces on each
individual gas molecule in the box, Mg.

That seems reasonable until you think about the details of what is going
on inside the box. At any given instant, the vast majority of the gas molecules
are not touching the box! Also, some of the gas molecules are colliding with
the top of the box, exerting an upward force on the box. How can these
molecules possibly contribute to the weight measured by the scales? What
is the mechanism for the Momentum Principle working out correctly for this
multiparticle system?

The number density n at the bottom of the box is slightly larger than the
number density at the top of the box, if all the gas is at the same temperature,
which is a good assumption in most situations. Therefore the pressure, P =
nkpT,is larger at the bottom than at the top. Let’s calculate the y components
of the forces associated with these slightly different pressures, where A is
the area of the top (and bottom) of the box, and 4 is the height of the box
(Figure S1.13).

Fnet,y = PtopA - PbottomA =AAP

where AP is the pressure difference from bottom to top inside the box. We can
calculate AP directly, by starting from the fact that for a small height change
Ay, we have this:

dP

AP dP
AR ——, SO AP%EAy

Ay "~ dy’
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If we can evaluate dP/dy, we can determine the small pressure difference AP.
Since P = nkpT, the height dependence of the pressure is the same as for the
number density (for constant temperature), and we can write this:

dP d _

dy ~ dy (P bottome "8/ ¥ T)

dpP _ m m
E = Ppottom® ey /st <_kBé;) ~ —Ppvottom (kgé;")

because the factor e="8/k87 is very close to 1. The result is negative because the
force the gas exerts on the top of the box is smaller than the force on the bottom.
Choosing Ay = h, and writing Pyoom = nkpT, we have this result for AP:

dP mg

AP="Ay~ —nkpT | —=>|h=— h

Ay kT | | = g
Now that we know the pressure difference, we can calculate the y component
of the net force:

Frety =AAP = —nmg(Ah)

QUESTION A h is the volume V of the box, and n = N/V is the
number of molecules per m? in the box, so what does this equation
reduce to?

We have the striking result that the air inside the box pushes down on the box
with a force equal to the combined weight Mg of all N molecules in the box:

Fy,=—-Nmg=-Mg

We have shown that the difference in the time- and space-averaged momentum
transfers by molecular collisions to the top and bottom of the box is equal
to the weight of the gas in the box, as predicted by the Momentum Principle
for a multiparticle system. The pressure difference is very slight, but then the
weight of the gas is very small, for that matter. What is surprising is that at any
particular instant, relatively few of the molecules are actually in contact with
the box, yet the effects of these relatively few molecules is the same as though
they were all sitting on the bottom of the box.

You could think of a box full of water in the same way. The water pressure
is larger at the bottom than at the top, but with water this difference is quite
large, corresponding to the much higher density of water. In fact, a column of
water only 10 m high makes a pressure equal to that produced by the many
kilometers of atmosphere.

Consider a column of water 10 m high with cross-sectional area A. The
density of water is 1 g/cm?, which is 1 x 10° kg/m?. The total mass of the column
is the density (kg/m?) times the volume A (10 m), so the pressure on the bottom
of the column is

(1 x 103 kg/m*)A(10 m)(9.8 N/ kg)
A

This is the same result we found for atmospheric pressure at STP.

~1x10°N/m?

QUESTION In the preceding discussion the box was in vacuum, but
under normal conditions the box we were weighing would have
been surrounded by air. Suppose that the box has thin walls and is
initially open to the air. Then we close the lid, trapping air inside it.
Consider all forces including buoyancy forces, and determine what
the scales will read. Will it be the weight of the box alone or the box
plus air?

The scales will measure the weight of the box alone, because the weight of the
air is M,;,g and the buoyancy force is M,;,g upward.
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Figure S1.15 Impacts of the ball on the
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Figure S1.16 A cylinder with a piston that
can move vertically.
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Figure S1.17 The piston can be loaded
with varying amounts of sand.
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Application: Weight of a Bouncing Molecule

There is a related calculation that is amusing. You may have done a related
homework problem earlier on collisions, in which case you already went
through a similar calculation. Consider a single molecule (otherwise in
vacuum) that bounces up and down on a scale without losing significant energy.
Figure S1.14 shows a snapshot at the instant that the molecule is just bouncing
up after hitting the scale.

What do the scales read? If the scales can respond quickly, we will see brief
spikes each time the molecule strikes it (Figure S1.15). Let’s determine what the
time-averaged force is.

QUESTION How long does it take for the molecule to reach the top
of its trajectory, A, starting with a speed v? What then is the time At
between impacts? How much momentum transfer is there to the
scale on each impact?

It takes a time interval v/g to go up (for the speed to decrease from v to 0
with acceleration —g) and another time interval v/g to come down, so the time
between impacts is At = 2v/g. Each impact transfers an amount of momentum
AP =2mvy. Therefore the time-averaged force is

AP _ 2mv

A 2vg T8

If the scale is sluggish, and can’t respond in a time as short as At = 2v/g, the
scale will simply register the value mg, just as though the molecule were sitting
quietly on the scale.

S1.5 ENERGY TRANSFERS

In this section we offer an analysis of energy transfers between a gas and
its surroundings. We will address such questions as these: How much energy
transfer Q due to a temperature difference is required to raise the temperature
of a gas by one degree (the heat capacity of a gas)? How does the
temperature of a gas change when you compress it quickly? Do the answers
to these questions depend on what kind of gas is involved?

We need a device that lets us control the flow of energy into and out of a
gas, in the form of work W or energy transfer Q. We will use a system consisting
of a cylindrical container containing gas that is enclosed by a piston that can
move in and out of the cylinder with little friction but which fits tightly enough
to keep the gas from leaking out (Figure S1.16). This is similar to a cylinder
in an automobile engine, into which is sprayed a mixture of gasoline vapor
and air. The mixture is ignited by a spark, and the chemical reactions raise the
temperature and pressure very high very quickly. The piston is pushed outward,
which turns a shaft that ultimately drives the wheels.

Force and Pressure

Figure S1.17 shows a cylinder with a vertical-running piston on which we can
load varying amounts of sand, in order to be able to control the pressure of the
contained gas, and to be able to do controlled amounts of work on the gas. We
will also put the cylinder in contact with hot or cold objects and allow energy
transfer into or out of the cylinder.

QUESTION Consider the piston plus sand as the system of interest
for a moment and think about what forces act on this system.

A free-body diagram for the piston + sand system (Figure S1.18) includes the
downward gravitational forces on the piston (Mg) and on the sand (mg), an
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Figure S1.18 Forces on the piston.

Add or remove one

‘\g‘rain at a time

Figure S1.19 By adding or removing one
grain of sand at a time we effect a
“quasistatic” compression or expansion.

upward time- and space-averaged force due to the pressure of the enclosed gas
on the lower surface of the piston, and a downward time- and space-averaged
force due to the pressure of the outside atmosphere on the upper surface of the
system.

Since pressure is force per unit area, the upward force is PA, where A is
the surface area of the bottom of the piston. Similarly, the downward force
contributed by the outside atmosphere is P,;;A . These pressure-related forces
are not actually continuous, since they are the result of collisions of individual
gas molecules with the piston and sand. However, the rate of collisions is so
extremely high over the area of the piston that the force seems essentially
constant. For example, in Checkpoint 2 you found that on average, at STP
(standard temperature and pressure) about 6 x 10! helium atoms strike a tiny
l-mm-diameter section every second.

QUESTION In mechanical equilibrium (velocity of piston not
changing), solve for the gas pressure inside the cylinder.

The Momentum Principle tells us that in equilibrium the net force on the piston
+ sand system must be zero, from which we are able to deduce that the pressure
of the gas inside the cylinder is

Mg+mg
P=Py +——=
alr“" A

A Sudden Change

By varying the amount of sand (/) we can vary the pressure of the gas under
study.

QUESTION If you suddenly add a lot of sand, what happens?

If you suddenly add a lot of sand to the piston, there is suddenly a sizable
nonzero net downward force on the piston + sand system: Fpet = AP,jr + Mg+
mg — AP #+0. The piston starts to pick up speed downward. As it does so, it
runs into gas molecules and tends to increase their speeds.

QUESTION What happens to the temperature of the gas in the
cylinder?

Since higher average speed means higher temperature, the gas temperature
starts to increase at the same time that the volume of the gas is decreasing.
This is a double whammy: both increased temperature and decreased volume
contribute to increased pressure, since P = (N/V)kpT. Therefore the pressure
in the gas quickly rises, and eventually there will be a new equilibrium with a
lower piston (supporting more sand) and a higher gas pressure in the cylinder.

However, getting to that new equilibrium is pretty complicated. If there
is no friction or other energy dissipation, the piston will oscillate down and
up, with the gas pressure going up and down. It is even possible to determine
an effective “spring stiffness” for the gas and calculate the frequency of the
oscillation. However, in any real system there will be some friction, so we know
that the system will eventually settle down to a new equilibrium configuration.

Quasistatic Processes

To avoid these complicated (though interesting) transient effects, we will study
what happens when we add sand very carefully and very slowly, one grain
at a time, and we assume that the new equilibrium is established almost
immediately. This is called a “quasistatic compression” because the system is
at all times very nearly in equilibrium (Figure S1.19). Similarly, if we slowly
remove one grain at a time, we can carry out a “quasistatic expansion.” Note
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in particular that at no time does the piston have any significant amount of
kinetic energy, and macroscopic kinetic energy is essentially zero at all times.
Of course there is plenty of microscopic kinetic energy in the gas molecules and
the outside air molecules and in the thermal motion of atoms in the cylinder
walls, piston, and sand.

Suppose we carry out a lengthy, time-consuming quasistatic compression
by adding lots of sand, one grain at a time, very slowly. The piston goes down
quite a ways, the pressure in the gas is a lot higher, and the volume of the
gas is a lot smaller. If we know the pressure and volume, we can calculate
the temperature by using the ideal gas law P = (N/V)kpT (assuming the gas
density isn’t too high to make this invalid).

Can we predict how low the piston will go for a given amount of added
sand? Oddly enough, no—not without knowing something more about this
device. There are two extreme cases that are both important in practice and
calculable for an ideal gas. If the apparatus is made of metal (a very good
thermal conductor) and is in good thermal contact with a large object at
temperature 7, the process will proceed at nearly constant temperature, with
energy transfer from the gas into the surroundings. If the apparatus is made of
glass (a very poor thermal conductor), the temperature of the gas inside the
cylinder will rise in a predictable way, with negligible energy transfer to the
surroundings in the form of energy transfer Q. We will analyze both kinds of
processes: constant temperature processes and no-Q processes.

Constant-Temperature (Isothermal) Compression

Suppose that the cylinder is made of metal (which is a very good thermal
conductor) and is sitting in a very big tub of water whose temperature is 7T,
as shown in Figure S1.20.

As we compress the gas, the temperature in the gas starts to increase.
However, this will lead to energy flowing out of the gas into the water, because
whenever the temperatures differ in two objects that are in thermal contact
with each other, we have seen that there is a transfer of energy from the
hotter object into the colder object. In fact, for many materials the rate of
energy transfer is proportional to the temperature difference—double the
temperature difference, double the rate at which energy transfers from the
hotter object into the colder one.

The mechanism for energy transfer due to a temperature difference is that
atoms in the hotter object are on average moving faster than atoms in the colder
object, so in collisions between atoms at the boundary between the two systems
it is likely that energy will be gained by the colder object and lost by the hotter
object.

Energy transfer out of the gas will lower the temperature of the gas,
since the total energy of the gas is proportional to the temperature. Quickly
the temperature of the gas will fall back to the temperature of the water. The
temperature of the big tub of water on the other hand will hardly change as a
result of the energy added to it from the gas, because there is such a large mass
of water to warm up.

Therefore the entire quasistatic compression takes place essentially at the
temperature of the water, and the final temperature of the gas is nearly
the same as the initial temperature of the gas. This is a constant-temperature
compression (also called an “isothermal” compression, which just means
constant temperature). Similarly, we can slowly remove sand from the piston
and carry out a quasistatic constant-temperature expansion.

QUESTION Suppose that the original gas pressure and volume were
Py and V1, and as the result of a constant-temperature process the
final volume is V,. What is the final pressure P,?
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Figure S1.21 Force on the gas by the piston.

Since the temperature hasn’t changed, from the ideal gas law P = (N/V)kpT
we can deduce that P1 V| = P, V>, and therefore P, = P1(V1/V>).

Energy in a Constant-Temperature Compression

A more difficult question we can ask (and answer!) is this: How much energy
was added to the water in the constant-temperature compression?

QUESTION What energy inputs and outputs were made to the gas?
What energy change occurred in the gas?

The piston did work on the gas, and there was energy transfer Q out of the gas
(and into the water). The Earth’s gravitational force did work on the gas (since
the center of mass of the gas went down), but this is negligibly small compared
to the work done by the piston (the lowering of the heavy piston involves much
more gravitational energy than the lowering of the low-mass gas).

QUESTION Did the total energy of the gas change (ignoring the
small gravitational energy change)?

Since the total energy of an ideal gas is proportional to temperature (including
rotational and vibrational energy if the gas is not monatomic), and we made
sure that we kept the temperature constant, the total energy of the gas did not
change. Therefore we have this energy equation for the open system that is
the gas:

A(energy of gas) = (W by piston) — (]Q| that flowed into water) =0

Symbolically, AEg,s = W+ QO = 0, where Q is negative (transfer out of system).
In thermal processes of this kind, the energy equation is called “the first law of
thermodynamics.”

If we can calculate the work done by the piston, we can equate that result
to the amount of energy transfer Q into the water. The piston exerts a (time-
and space-averaged) force PA on the gas, where P is the pressure in the gas and
A is the cross-sectional area of the piston (Figure S1.21).

QUESTION If the piston drops a distance £, is the work it does PA h?

As the piston drops, the pressure in the gas increases, so the force is not
constant. We have to integrate the variable force through the distance 4 in
order to determine the work. If we measure x downward from the initial piston
position, at each step dx of the way the increment of work done is PA dx.
However, A dx is an increment of volume (base area A times altitude dx), and
the change in the volume is negative. Putting this all together, we have this:

WORK DONE BY A PISTON ON A GAS

Va
W= —/ PdV
Vi

Check the sign: If the volume decreases, the integral will be negative, and
the minus sign in front of the integral makes the work done on the gas be
positive, which is correct. Conversely, in an expansion of a gas, the integral
is positive and the work is negative, because the gas is doing work on the piston
rather than the other way round.

QUESTION In a constant-temperature (isothermal) compression,
work is done on the gas. Where does this energy flow go? How does
the temperature stay constant?
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Figure S1.22 The gas is compressed at a
constant temperature 7 (the cylinder is
immersed in a large tub of water at
temperature 7).
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Figure S1.23 If T is kept constant, then the
product PV is also constant.
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As the piston moves down, it increases the average energy of the gas molecules
that run into it. Therefore the input work starts to raise the temperature of the
gas (higher speeds), but this higher temperature causes energy transfer Q out
of the cylinder, into the (very slightly) lower-temperature water. The net effect
is for energy to flow into the gas in the form of mechanical work, and out of
the gas into the water in the form of energy transfer Q. There is no change
in the total energy of the gas, because the temperature of the gas didn’t change.
The outward energy transfer brings the gas temperature back to what it was
before the falling piston tried to increase the temperature.

Now we can calculate quantitatively the work done by the piston in the
constant-temperature compression, which is equal to the energy transfer from
the gas to the surrounding water. We add lots of sand, one grain at a time
(to maintain quasistatic equilibrium), and we compress the gas from an initial
volume V to a final volume V, (Figure S1.22).

Replace P by NkpT/V, where T is a constant:

Va2 Vs
W=-— PdV:f/ NKsT 1/
v, v, V
Vaqv 1%
W= —NkBT/ - = —NkpT[InV];? = —NkpTln <VZ>
Vi 1

Since the process was a compression, V, is smaller than V;. Since
—In(V,/Vy) =1n(V;/V;), we have

Vv
Wby piston = |Qinto water| = NkpTln (Vl>

Just as the symbol W is normally used for “work,” so the symbol Q is normally
used for “energy transfer due to a temperature difference.” Here Q is negative
(energy output).

Graphical Representation

There is a useful graphical representation of this constant-temperature process.
We plot the pressure P vs. the volume V, as shown in Figure S1.23, and the
process is represented by a curve of constant 7' (which is also a curve of constant
PV ,since PV = NkgT). The area under the process curve is the integral of PdV.
In a compression the volume decreases, so we move to the left on the graph
and the integral is negative; W is positive and Q is negative. In an expansion
the volume increases, and we move to the right on the graph and the integral
is positive; W is negative and Q is positive.

Va
W= 7/ PdV
Vi

The First Law of Thermodynamics
For historical reasons, in thermal processes the Energy Principle is called “the
first law of thermodynamics.”
THE FIRST LAW OF THERMODYNAMICS
AEgys=W+Q
In the particular case of constant-temperature (isothermal) compression of an
ideal gas, we have

where Ej, is the “internal” energy of the gas (the sum of the translational,
rotational, vibrational, and other energy terms of all the molecules).
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Figure S1.24 1If the piston is locked so the
volume of the gas cannot change, we can
measure Cy of the gas.

Piston rises
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Water at high temperature 7

Figure $1.25 1If the piston is free to move,
the pressure inside the cylinder remains the
same, and we can measure Cp of the gas.

For historical reasons, many textbooks dealing with thermal physics define
work W as the work done by a system rather than work done on a system, so
the sign of W is changed. We define W as the work done on the system to be
consistent with other, nonthermal uses of the Energy Principle.

Heat Capacity

We were able to calculate the important properties of a constant-temperature
compression, where the apparatus was in good thermal contact with its
surroundings. Before analyzing the opposite extreme, where the apparatus
is thermally insulated from its surroundings and no energy transfer due to a
temperature difference is involved, we will review the concept of heat capacity
in this context.

Lock the piston in position so that the volume of the gas won’t change
(Figure S1.24), and so no work is done (W = 0). Put the apparatus in a big
tub of water whose temperature is higher than the gas temperature, so that
energy transfer will go from the water to the gas. Allow an amount of energy
transfer Q due to the temperature difference to enter the gas and observe how
much temperature rise AT has occurred in the gas. We define the “specific heat
capacity Cy at constant volume” on a per-molecule basis in the following way,
where N as usual is the total number of molecules in the gas:

AFEhermal = NCyAT  (constant volume)

Since W = 0, this is also equal to Q. The larger the specific heat capacity, the
smaller the temperature rise AT for a given energy input Q.

QUESTION What is Cy for a monatomic gas such as helium?

Since the total energy in a monatomic gas is NKimns = s NkpT, the energy
transfer Q will increase the total energy of the gas by an amount %NkBAT,
so Cy = %kB. Experimental measurements of the specific heat capacity of
monatomic gases agree with this prediction.

For gases that are not monatomic, such as nitrogen (N;), Cy can be
larger than %kB because the total energy can be larger than %NkBT due to
rotational and vibrational energy relative to the center of mass of the molecule.
Before quantum mechanics, theoretical predictions for the contribution of the
rotational and vibrational energies to the specific heat capacity of gases did
not agree with experimental measurements. This was one of the puzzles that
was eventually resolved by quantum mechanics, as we found in Chapter 12.

SPECIFIC HEAT CAPACITY AT CONSTANT VOLUME
ON A PER-MOLECULE BASIS

3 .
Cy= EkB for a monatomic gas (He, etc.)

3
Cy > sz for other gases (N, etc.)

Heat Capacity at Constant Pressure

If we don’t lock the piston but let the gas expand at constant pressure, the
incoming energy transfer Q due to the temperature difference not only raises
the energy of the gas by an amount AEeima = NCyAT but also raises the
piston, which involves an amount of work W (Figure S1.25). We define the
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Figure $1.26 If the cylinder and piston are
made of insulating material, no energy
transfer O can occur between the gas and
its surroundings. This is called an adiabatic
compression.
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“specific heat capacity Cp at constant pressure” on a per-molecule basis as
follows:

Q= NCpAT (constant pressure)

Evidently Cp is bigger than Cy, because NCpAT = NCyAT + W. We can
calculate the work done on the piston by the gas as the gas expands, which
is the negative of the work done by the piston on the gas:

Vv, v,
W= PdV =P dV = PV, — PV| = NkgT, — NkgT; = NkgAT
Vi Vi

Therefore for an ideal gas there is a simple relationship between Cy and Cp:

NCpAT = NCyAT+ NkgAT
Cp=Cy+kp

Checkpoint S What is the specific heat capacity at constant pressure on a
per-molecule basis Cp for helium?

Molar Specific Heat Capacity

Specific heat capacity is often given on a per-mole basis rather than a
per-molecule basis. The molar specific heat capacity at constant volume for
an ideal gas is Cy = %R, where R is the molar gas constant (8.3 J/K), which is
6 x 10% k. The molar specific heat capacity at constant pressure is Cp = Cy + R
for an ideal gas.

No-Q (Adiabatic) Compression

With the apparatus made of metal and sitting in a big tub of water,
the temperature during the compression didn’t change. Now we analyze the
opposite extreme. We make the cylinder and piston out of glass or ceramic
(which are poor conductors for energy transfer due to a temperature
difference) to minimize energy transfer out of the gas as the gas gets hotter
during the compression. In fact, we make the approximation that there
is no energy transfer at all (Figure S1.26). Such a no-Q process is also
called “adiabatic” (which means “no energy transfer due to a temperature
difference”).

How realistic is such a no-Q approximation? For many real situations this
can be a rather good approximation if the compression or expansion is fast, so
that there isn’t enough time for significant energy transfer due to a temperature
difference. Such a flow of energy from one object to another is a rather slow
process. For example, a cup of coffee sitting on a table may stay quite hot for
ten minutes or more.

However, didn’t we say that we were going to carry out compressions
and expansions very slowly, “quasistatically”? Yes, so there is a contradiction.
However, it is often the case that motion may be slow enough to be a
good approximation to a quasistatic process and nevertheless may also be
fast compared to the time required for significant energy transfer due to a
temperature difference. Again, think of how long it takes a cup of coffee to
cool off.

We again consider the gas in the cylinder as the system of interest, and the
work done by the piston is equal to the increase in energy of the gas:

Va
Wz—/ PdV = NCyAT
Vi
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(Q = 0; adiabatic)
(PV? = constant)
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(T, PV constant; isothermal)
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Figure S1.27 PV curves for a no-Q
(adiabatic) process and a constant
temperature (isothermal) process.

QUESTION Why did we use Cy in this equation? The volume isn’t
constant in this compression!

An ideal gas is unique among materials in that its total energy is entirely
determined by the temperature, independent of volume or pressure. So the
change of energy of the gas itself is just NCy AT, even when the volume is not
constant. As a practical matter, real gases behave this way as long as the density
isnot too high. At high densities the energy of the gas includes a significant term
associated with the interatomic forces.

We can work through the integration, starting from a “differential” form
of the equation shown above:

—PdV = NCydT
Use the gas law P = (N/V)kpT to substitute for the pressure:

d
—Nkg T7V — NCydT

Divide through by kpT and rearrange:

(&)

kg) T "V
Cy daT av
(z@)/ T v
Now integrate:
(Cv> InT+InV = constant
kg

Rewrite, using the properties of logarithms:

In7(v/%8) 1 InV =1In <T<CV/ kB)V) = constant

Therefore we have

T(Cv/kB)y — constant

Checkpoint 6 Use the ideal gas law to eliminate 7" from this expression,
and show that PV” = constant in a no-Q process, where the parameter ~y
is defined as the ratio of the constant-pressure specific heat capacity to the
constant-volume specific heat capacity, ¥ = Cp/Cy. (Since Cp is greater
than Cy, ~y is greater than 1.) In particular, if the initial pressure and volume
are P; and Vq, and the final pressure and volume are P, and V;, then

P,V) = P1V]. Alternatively, we also have TZ(C"/ ke)y, — Tl(c"/ ey,

Graphical Representation

Again, there is a useful graphical representation of this no-Q process. In
Figure S1.27 we plot the pressure P vs. the volume V, and the process is
represented by a curve along which PV? = constant. The area under the process
curve represents the work W. For comparison we also show the curve for a
constant-temperature process (7 and PV constant). The no-Q curve is much
steeper than the constant-temperature curve.

Work vs. O

We have studied the response of a gas to energy inputs and outputs, both
mechanical W (work) and thermal Q (energy transfer due to a temperature
difference). Work represents organized, orderly, macroscopic energy input.
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Energy transfer due to a temperature difference represents disorganized,
disorderly, microscopic energy input. There is randomness at the atomic level
in the collisions of atoms, which is the basic mechanism for energy transfer due
to a temperature difference. In Chapter 12 we saw deep consequences of the
distinction between work W and energy transfer Q.

$1.6 FUNDAMENTAL LIMITATIONS
ON EFFICIENCY

An important technology involves the conversion of energy transfer Q due
to a temperature difference into useful work done by an engine on some
object in the surroundings (Figure S1.28). Such an engine is called a “heat
engine.” For example, in a steam-powered electricity generating plant, coal
is burned to warm up water that drives a steam engine to turn a generator,
which converts the work done by the steam engine into electric energy. Energy
conservation of course puts limits on how much useful work you can get from
the burning of the coal—but there is a further limitation due to the second
law of thermodynamics. It turns out that in a practical generating plant only
about one-third of the energy of the coal can be turned into useful work! The
fundamental problem is that energy transfer due to a temperature difference is
a disorderly energy transfer, and the second law of thermodynamics takes that
into account.

We will find that the most efficient processes are “reversible” processes—
that is, processes that produce no change in the entropy of the Universe (a
reversed movie of such a process looks possible). In the next sections we
discuss two processes, mechanical friction and finite-temperature-difference
energy transfer, which are major contributors to entropy production and whose
effects must be minimized in order to obtain the most efficient performance
in a mechanical system. Where we are headed is to establish limits on how
efficiently thermal energy can be turned into mechanical energy in a heat
engine, as a consequence of the second law of thermodynamics. This is a
revealing example of the power of the second law of thermodynamics to set
limits on possible phenomena.

Friction and Entropy Production

The second law of thermodynamics says that the entropy of the Universe never
decreases. Portions of the Universe may experience a decrease of entropy, but
only if the entropy of other portions increases at least as much (and typically
more). An example of a process that increases the total entropy of the Universe
is sliding friction. A block sliding across a table slows down as kinetic energy
associated with the overall motion of the block is dissipated into random
(thermal) energy inside the block and table, with an increase in entropy.

This friction process is irreversible. We would be astonished if after coming
to rest the block suddenly started picking up speed back toward its starting
position, although this would not violate conservation of energy. However, the
probability is vanishingly small that the dissipated energy in the block and table
could concentrate back into an orderly motion of the block.

Energy Transfer and Entropy Production

Mechanical friction contributes to increasing the entropy of the Universe.
We will show that energy transfer between two objects that have different
temperatures also makes the total entropy of the Universe increase. This is
then a process to avoid, if possible, in an efficient heat engine.

Connect a metal bar between a large block at a high temperature Ty
and another large block at a low temperature 7, (Figure S1.29). We write
the rate of energy transfer from the high-temperature block (the “source”
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to the lower-temperature block (the “sink™) as Q. The dot over the letter O
means “rate” or “amount per second.” Since Q has units of joules, Q has units
of joules/second, or watts. This energy transfer rate is

= proportional to the “thermal conductivity” ¢ of the bar (metals have higher
thermal conductivity than glass or plastic),

= proportional to the temperature difference (twice the temperature
difference, twice the rate of energy transfer),

= proportional to the cross-sectional area A of the bar (twice the cross-sectional
area is like having two bars), and

= inversely proportional to the length L of the bar (twice the length of the bar,
half the energy transfer rate):

RATE OF ENERGY TRANSFER DUE TO
A TEMPERATURE DIFFERENCE

O—o (THZTL)

Units are J/s, or W. Q is a positive quantity and is the absolute value
of the rate of energy flow into or out of a system due to a temperature
difference.

The quantity (75 — 71 )/L is called the “temperature gradient.” The larger the
gradient (the more rapidly the temperature changes with distance along
the bar), the larger the number of joules per second of energy transfer.

We want to show you that energy transfer between different temperatures
increases the total entropy of the Universe. Suppose that the source and sink
are so large that small energy transfers don’t change their temperatures much.
Since 1/T= 0S/0FE at constant V, it follows that an energy input (AE = Q) into
a system whose temperature and volume hardly change leads to the following
entropy change of that reservoir:

Y
AS_?

Suppose that the energy transfer rate is Q. In a short time interval At, the
high-temperature source at temperature 7 loses an amount of energy QAt.

QUESTION In this short time interval At, does the entropy of the
source increase or decrease? By how much?

Since ASy = (AE)/ T, and the high-temperature source loses energy, we have
ASy=—(QAY/Ty.

In this same time interval, the low-temperature sink at temperature 77,
gains the same amount of energy, QAf.

QUESTION In this short time interval At, does the entropy of the
sink increase or decrease? By how much?

Since the low-temperature sink gains energy, we have AS; = +(QA?)/Ty.

There is a crucial and perhaps not entirely obvious point: Does the entropy
of the bar change during this time interval? No. The blocks are so large
that their temperatures don’t change much in a short time interval, so the
temperatures at the ends of the bar, and all along the bar, are not changing.
Every second, energy enters the bar, but the same amount of energy leaves the
bar, so the energy of the bar isn’t changing. Nothing about the bar is changing.
It is merely a conduit for the energy transfer, but its state is not changing.
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Therefore the change in the total entropy of the Universe in a time interval
Atis
OAr  OAt . 1 1
ASsource =+ ASsink + ASbar = —Tiy =+ TiL +0= QAI TL - TH

QUESTION s this quantity positive or negative? Is this consistent
with the second law of thermodynamics?

Since Tr, < Ty, 1/Ty, > 1/Ty, and the entropy change of the Universe in this
process is positive. This is consistent with the second law of thermodynamics,
which states that the entropy of the Universe should never decrease.

Reversible and Irreversible Processes

An increase in the total entropy of the Universe is associated with an
irreversible process, because to return to the earlier state would require that
the total entropy of the Universe actually decrease, which won’t happen with
macroscopic systems. We would be astonished if the energy transfer suddenly
reversed and ran from the colder block thermally back “uphill” to the hotter
block!

There is only one way to carry out energy transfer due to a temperature
difference reversibly or nearly so (that is, with little or no change in the total
entropy of the Universe) —do it between systems whose temperatures are very
nearly equal to each other (Ty ~ T ). There’s a practical problem, however.

QUESTION If the two temperatures are nearly equal (to avoid
increasing the entropy of the Universe), at what rate is energy
transferred from the (slightly) hotter source to the (slightly) cooler
sink?

Energy transfer will flow extremely slowly, because Q is proportional to the
temperature difference (or more specifically to the temperature gradient). If
there is hardly any temperature difference, the energy transfer rate will be
very small. So we can carry out such energy transfers nearly reversibly, hardly
changing the entropy of the Universe, but only if we do it so slowly as to be of
little practical use in driving some kind of mechanical heat engine that converts
thermal energy into work.

S1.7 A MAXIMALLY EFFICIENT PROCESS

Despite the serious practical problem that reversible energy transfer due to
a nearly zero difference in temperature proceeds infinitesimally slowly, we
will analyze reversible “heat engines” in which (nearly) reversible energy
input with tiny temperature differences is used (very slowly!) to do something
mechanically useful, such as lift a weight or turn an electric generator. We will
also assume that we can nearly eliminate sliding friction. The idea that we
will pursue is to see how efficiently we can convert disorderly thermal energy
into orderly mechanical energy (a lifted weight). We expect that reversible
processes, which don’t increase the total entropy of the Universe, should be
the most efficient processes, though we recognize that these most efficient
processes must proceed excruciatingly slowly.

Since we will use nearly reversible processes to do work, we could run
the heat engine backward. Such a backward-running engine turns out to be a
refrigerator —an engine in which work input to the engine can lead to extracting
thermal energy from something to make it colder or to keep it cold.

The conception of a theoretically most efficient possible heat engine, and
the recognition that this ideal engine would have to be reversible and not
increase what we now call the total entropy of the Universe, was due to a
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Figure $1.30 Constant-temperature
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lower than Ty. The quantity M is the
absolute value of the work done on the
system, where W is negative in this
situation, since the system does work on
the surroundings.

young French engineer, Sadi Carnot, in 1824. His achievement is all the more
remarkable because it came before the principle of energy conservation was
established!

After using the second law of thermodynamics to determine the maximum
possible efficiency of infinitely slow heat engines, in the last part of the
supplement we will analyze engines that run at useful speeds. We will find as
expected that they are even less efficient than the infinitely slow engines.

A Cyclic Process of a Reversible Engine

Some of the first practical heat engines drove pumps to pump water out of deep
mines in England, repeatedly lifting large amounts of water large distances. The
energy came from burning coal, which boiled water to make steam in a cylinder
that pushed up on a piston and operated the pump. People started wondering
how efficient such an engine could be. What limits the amount of useful work
you can get from burning a ton of coal?

We describe a scheme for running a heat engine in a reversible way, which
ought to be as efficient as possible. For concreteness, our engine is a device
consisting of a cylinder containing an ideal gas, with a piston and some sand
on the piston to adjust the pressure on the gas (Figure S1.30). This is a simple
device that permits energy exchanges in the form of work and energy transfer
due to a temperature difference. As we’ll see, the actual construction details
of the engine don’t matter for the theoretical question regarding the maximum
possible efficiency, though they matter very much in the actual construction of
a useful engine.

During the rest of this supplement we’ll be dealing with work done on the
piston by the surroundings (a positive quantity in the Energy Principle) and
work done on the surroundings by the piston (a negative quantity in the Energy
Principle). To simplify the diagrams and the discussion, we’ll use the name M
for the absolute value of the mechanical energy transfer (|W|) between system
and surroundings, and on diagrams we’ll indicate with an arrow the direction
of the energy transfer, as in Figure S1.30.

In many textbooks dealing with thermal physics, work W is defined as
positive when the energy transfer is from the system to the surroundings, which
is opposite to the definition in mechanics, where work W is defined to be
positive when the energy transfer is from the surroundings to the system. For
consistency between mechanics and thermal physics, we always say that W
is positive when work is done on the system, and we use M for the absolute
magnitude of W. In Figure S1.30 there is mechanical energy transfer from the
system to the surroundings, so W is negative, but its absolute value M is a
positive quantity.

A Constant-Temperature (Isothermal) Expansion

In addition to the engine itself, we need a large high-temperature source, large
enough that extracting some energy from it will cause only a negligible decrease
in its temperature. Start by arranging that the engine (the gas cylinder with
its piston) has a temperature very slightly lower than the temperature 7Ty of
the high-temperature source. We connect the engine to the high-temperature
source and perform a reversible constant-temperature (isothermal) expansion
of the engine, doing some work on the surroundings in the process (Figure
S1.30). We lift the piston by slowly shifting some sand sideways from the piston
onto nearby shelves. This requires almost no work on our part but results in the
lifting of some weight. We make sure that the temperature of the gas doesn’t
change during this process. There is energy transfer into the engine because it
is very slightly cooler, but the temperature difference is so slight that there is
negligible change in the entropy of the Universe.
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Entropy and Energy in Lifting the Piston

Remember that the entropy change of a system when there is energy transfer
Qis AS = Q/T. Inlifting the piston the entropy of the high-temperature source
has changed by an amount ASy = —Qpy/ Ty, where Qp is a positive quantity.
The entropy of the gas has changed by an amount ASg,s = +Qp/Ty. The
entropy of the Universe hasn’t changed at all. (The increased entropy of the gas
is associated with the fact that there are more ways to arrange the molecules in
a large volume than in a small volume.)

Because the temperature hasn’t changed, there is no change in the energy
of the ideal gas. Recall that the energy of an ideal gas, or a low-density real gas,
is a function solely of the temperature, not the volume. (A dense real gas is
more complicated, because the electric potential energy for pairs of molecules
depends on distance, and therefore the energy of the gas depends on volume
as well as temperature.)

We have succeeded in converting all of the energy transfer from the high
temperature source into useful work (lifting the piston), because none of the
input energy went into changing the energy of the gas. This is 100% efficiency
in converting thermal energy into useful work on the surroundings. What’s the
problem?

The Need for a Cycle

The problem is this: We need to be able to do this again, and again, and again.
For example, we want to keep pumping water out of the deep mine, over and
over. However, to repeat the lifting process, we have to return to the original
state, with the gas compressed. We could simply reverse the process, doing work
on the gas (constant-temperature compression), with energy transfer from the
gas into the high-temperature source. The net effect, though, would be that
there was zero net energy transfer to the gas, and zero net work done on the
surroundings.

We need to run our heat engine in a nontrivial repetitive cycle, where we
can lift the piston repeatedly. Each time we lift the piston and do useful work,
we need to get the piston back down again without having to do the same
amount of work to push it down. If we can get the gas back to its original state
with net work done on the surroundings, we will have a useful device.

One possibility for bringing the piston down would be to let the gas cool
down. However, to lower the temperature we would have to place the gas
cylinder in contact with a large object at some low temperature 77, called
the “sink” because, as we'll see, we will dump some energy into it. We can’t
place the gas cylinder in contact with the sink immediately, because the gas
is at a high temperature Ty, and placing the hot gas in contact with the cold
sink would mean that there would be a large temperature difference, and there
would be a large increase in the entropy of the Universe associated with the
energy transfer from the hot gas to the cold sink.

A No-0Q (Adiabatic) Expansion

To avoid this large production of entropy, we need to bring the temperature
of the gas down almost to 7}, before making contact with the sink. To do this,
we disconnect the gas cylinder from the high-temperature source and perform
a reversible no-Q (adiabatic) expansion, which does some more work on the
surroundings and lowers the temperature of the engine (Figure S1.31). This
is accomplished by slowly removing some weight from the piston, allowing
the gas to expand and the temperature to fall. We stop the expansion when the
temperature of the gas is just slightly higher than the low temperature 7 of
the sink.
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Figure §1.34 P vs. V for the engine cycle.
The shaded area represents the net work
done by the engine on the surroundings.

A Constant-Temperature (Isothermal) Compression

We can now safely place the gas cylinder in contact with the low-temperature
sink. This is okay as far as entropy production is concerned, because we made
sure that the temperature of the gas is only very slightly higher than the
sink temperature 7. The piston is now quite high, and we need to bring it
down. We do this by slowly adding some weight to the piston, performing a
constant-temperature (isothermal) compression (Figure S1.32). There is energy
transfer into the sink. Because the temperature of the ideal gas is nearly 7 at
all times, there is no energy change in the gas. Therefore the work that we do
is equal to the energy transfer Qy into the sink.

There is an increase in the entropy of the sink AS;, =+Qy /T, and there
is an entropy decrease in the entropy of the gas ASgas = —Qp /T1.. The entropy
of the Universe doesn’t change. The decreased entropy of the gas is associated
with the fact that there are fewer ways to arrange the molecules in a small
volume than in a large volume.

A No-Q (Adiabatic) Compression

We stop the compression at a particular state of the gas chosen with care so that
we can do the following: We disconnect the engine from the low-temperature
sink and perform a no-Q compression that raises the temperature of the gas to a
temperature just barely less than T}y, the temperature of the high-temperature
source. We do some work to perform this compression (Figure S1.33).

This compression brings the system back to its original state (density,
pressure, temperature), so we can repeat the cycle of four processes all over
again. The possible usefulness of this engine is that we can run it repeatedly,
over and over. What remains to be analyzed is how much work is done on the
surroundings in one cycle, and how much energy input we need to supply. Of
course if we find that the net work is zero, the engine won’t be useful. However,
explicit calculations for an ideal gas show that at least in that case there is net
work done on the surroundings. We will find that this is true for any reversible
engine run in such a cycle.

This reversible cycle of two constant-temperature (isothermal) processes
and two no-Q (adiabatic) processes running between a high-temperature
source and a low-temperature sink is called a “Carnot cycle.”

Summary of the Cycle

Figures S1.34 and S1.35 summarize the four processes of the engine cycle.

Source at Ty

Sink at 77,

Figure S1.35 The heat engine cycle.
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Step 1: Isothermal expansion in contact with Ty
Step 2: Adiabatic expansion (no contact); temperature falls to 7,
Step 3: Isothermal compression in contact with 7,

Step 4: Adiabatic compression (no contact); temperature rises
to Ty

The four processes return the gas to its original temperature and volume. The
question is, did we get any net work out of this cycle? Figure S1.34 shows the
pressure vs. volume during the c‘\écle. Earlier in this supplement we saw that
the work done on %/he gas is — V12 PdV, so the work done by the gas on the
surroundings is + | vlz PdV,whichis the area under one of these curves. Because
V increases during steps 1 and 2, the work done on the surroundings is positive,
but this work is negative in steps 3 and 4 because V decreases. The net work
done on the surroundings is therefore represented by the shaded area shown
in Figure S1.34. There is net energy output M, related to the fact that the PV
curves for the adiabatic processes (shown in blue and given by PV? = constant)
are steeper than the PV curves for the isothermal processes (shown in red and
given by PV = constant).

Entropy in a Cycle of a Reversible Engine

Let Qp be the (absolute value of the) energy extracted from the source at
temperature 7y during the constant-temperature expansion, and let Oy, be the
(absolute value of the) energy dumped into the sink at temperature 7, during
the constant-temperature compression. Remember that the entropy change of
a system when there is energy transfer Q is AS = Q/T.

The entropy change of the high-temperature source in one cycle = —%
H
The entropy change of the low-temperature sink in one cycle = + gL
L

QUESTION s there any entropy change in the engine in one cycle?

The entropy change of the engine in one cycle is zero, because the gas is brought
back to its original state.

QUESTION Therefore, in one cycle, how much entropy change is
there in the surroundings as a result of the work done on and by
the surroundings?

Only the energy transfer due to a temperature difference affects the entropy
during one cycle (work doesn’t contribute), and we calculated these through
the equation AS = Q/T. We were careful to run the engine in a reversible way,
avoiding making any increase in the total entropy of the Universe, so in one
cycle we have

On O

Therefore we can write this important relationship for one cycle of the engine:
ONE CYCLE OF A REVERSIBLE ENGINE

9n _ QL
Ty Ty

This is a surprisingly simple result for such a complicated process. What
does this simple result depend on? It depends solely on the second law
of thermodynamics, that statistically the total entropy of the Universe will
essentially never decrease.

We illustrated the processes in the cycle with a cylinder filled with an ideal
gas, but the result above doesn’t actually depend at all on the details of how
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Source at Ty

Figure $1.36 Conservation of energy lets
us determine the net mechanical energy
output from the engine to the
surroundings.

the engine is constructed. In particular, it doesn’t matter whether the engine
contains helium gas, or a solid block of rubber, or a liter of liquid alcohol.
There would be an easily visible difference between using a solid or liquid
rather than a gas in the engine, because the distance through which the piston
would move would be much smaller than with a gas. However, the simple result
shown above would remain the same.

Energy in a Cycle of a Reversible Engine

Let’s review the energy changes in the engine in one cycle. The source inputs an
amount of energy Q. The sink removes an amount of energy Q; . The working
substance returns to its original state, so it undergoes no change of energy. Is
there anything else? Yes, it may be that there has been net work done on the
surroundings. How can we tell? We can use the fact that the internal energy of
the engine does not change in one complete cycle:

AEengine =0p—-0r+W=0

QUESTION Use the result that Qy /Ty = Qp /Ty, (because the total
entropy of the Universe doesn’t change), to determine whether W
is positive or negative.

Because Q= (Ty/T1)0L > Or,wehave W= Q; — Qg < 0. The fact that Wis
negative means that our heat engine does net work on the surroundings in one
cycle. Figure S1.36 outlines the basic scheme. In one cycle the net effect is that
the engine takes in energy Qp from a hot source, does some work on something
(for example, turns an electric generator), and exhausts the remaining energy
Q¢ into a cold sink. The magnitude of the work done on the surroundings is
M=|W|=0y—0.

The crucial issue is that the heat engine will not run in repeatable cycles
without exhausting some energy to the low-temperature sink. You cannot
convert all of the energy Qp into useful energy output; a portion of Qp goes
into the low-temperature sink (Q). We need the low-temperature block to
allow us to begin the constant-temperature compression phase of the cycle in
a way that avoids any energy transfer with significant temperature difference,
which would increase the total entropy of the Universe.

We have to pay for the high-temperature energy Qp that we use, and the
loss of some of the input energy in the form of Q; is an unfortunate fact of
life. We pay for coal or fuel oil or electricity to warm something up to the high
temperature 7Ty, from which we can draw energy to do work for us.

For example, in an old railroad steam engine a fire maintained water at a
high temperature to constitute the high-temperature source. In an automobile
engine we burn gasoline to create a high temperature and push the pistons.
In an electricity generating station we burn coal or fuel oil, or use nuclear
fission reactions, to create a high-temperature source from which to drive the
generators. We’d like to get our full money’s worth (Qp), but we don’t. We only
get M = |W| = Qp — Qr,having “lost” some of the energy to alow-temperature
sink, which typically is our ordinary surroundings at around 20 °C (293 K).

Efficiency

This leads to the question, what fraction of the energy Oy that we pay for turns
into useful energy output M? This fraction is called the “efficiency” of the heat
engine:

. M
efficiency = On
H

QUESTION Given this definition of efficiency, prove the following
result:
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THE EFFICIENCY OF A REVERSIBLE ENGINE

Efficiency =1— s
Th
We have M/Qp = (Qy—Q01)/Qn=1-01/Qny=1-TL/Ty. This may seem
surprising. The efficiency of a reversible engine depends solely on the ratio of
the absolute temperatures of the source and sink. We emphasize that it doesn’t
matter how the engine is designed or what kind of materials it is made of. This
is the highest efficiency we can ever achieve for converting thermal energy into
useful work in a heat engine.

Checkpoint 7 An actual electricity generating plant is powered by a
nuclear reactor, with a high temperature of 300 °C and low temperature
of 25 °C (near room temperature). What would be the efficiency, if we can
treat the processes as being reversible?

No Other Engine Can Be More Efficient

We can show that no heat engine running between temperatures 7y and 71,
can be more efficient than a reversible engine.

The proof is a “proof by contradiction.” Suppose that an inventor claims to
have invented some cleverly designed new kind of (cyclic) engine, with a higher
efficiency than (1 — Ty, /Ty) when run between these same two temperatures.
In that case, for a given Qg the new engine would exhaust less Q; than is
exhausted from a reversible engine, and the entropy change of the Universe
with this new engine would be negative instead of zero:

_Qu + 9 <0 (Impossible!)
Ty TL
This would be a violation of the second law of thermodynamics, so it is
impossible. We can be quite sure that the inventor’s claims are not valid. Note
carefully that the inventor’s claims don’t violate energy conservation. Nothing
about energy conservation forbids converting 100% of the input energy Qg
into useful energy output M in a cycle. The impossibility lies, rather, in the
massive improbability of seeing the total entropy of the Universe decrease.

We took great pains to make a reversible heat engine, for which the
total entropy change of the Universe was zero. No other engine can be more
efficient. In fact, any real engine will have some friction and some energy
transfer across differing temperatures, in which case the entropy change of
the Universe will be positive. So the second law of thermodynamics leads to
the following, where “= 0” applies only to ideal, reversible engines, and “> 0”
applies to real engines:

ENTROPY CHANGE OF THE UNIVERSE FOR

REAL HEAT ENGINES
On QL
ASUniverse = _TH + TL >0

We should not underestimate the need for the ingenuity of inventors, however.
The reversible heat engine made with an ideal gas cylinder is pretty useless
for practical purposes. The challenge to ingenuity is to design engines that are
practical, and this involves many kinds of engineering design decisions and
trade-offs. However, no matter how ingenious the design, the second law of
thermodynamics puts a rigid limitation on how efficient any heat engine can be.

There are non-heat engines that have high efficiency. Almost all of the
electric energy flowing into an electric motor is converted into mechanical
energy. Fuel cells convert chemical energy into mechanical energy with high
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Refrigerator

Room at Ty

Food at 7,

Figure $1.37 Run the engine backward
and you have a refrigerator.

efficiency. The limitation we have found applies only to heat engines, in which
a high-temperature source drives the engine and necessarily exhausts energy
to a low-temperature sink.

QUESTION If ASypiverse > 01n one cycle of a heat engine, show that
the efficiency is less than the ideal efficiency (1 — T/ Ty) obtained
with a reversible engine.

ASUniverse >0

9L _ 9n
T, ~ Tn
01
Ou Tu
Or Ty,

M=0n-01=0u(1- 95 ) <0u(1-7-)

On Ty
M T
efficiency = —Q < (1 — L)
H

Running the Engine Backward: A Refrigerator or Heat Pump

We could run our engine backward, since we took care to make all aspects
of the cycle reversible. Starting from our original starting point, we would
disconnect from the hot block, perform a no-Q expansion to lower the
temperature to that of the cold block, connect to the cold block, do a
constant-temperature expansion, then disconnect from the cold block. Next
we do a no-Q compression to raise the temperature to that of the hot block,
connect to the hot block, and do a constant-temperature compression back to
the original state.

The net effect in one cycle is that the low-temperature block gives some
energy Q; to the engine, the high-temperature block absorbs some energy Qg
from the engine, and we do some (positive) work on the system (instead of the
engine doing work on the surroundings). Here is the Energy Principle when we
run this reversed engine:

AEengine =0.-0g+W=0

QUESTION Use theresultthat Qy /Ty = Qr /T (whichisstill valid
for our reversed engine, as you can convince yourself) to determine
whether W is positive or negative.

Since Qg = (Ty/TL)Qr > O, we have W= Qg — Oy > 0. This seems an odd
kind of “engine”: it doesn’t do any work for us—we have to do work on it. Is
that of any use? Yes! At the cost of doing some work, we extract energy from
a low-temperature block and exhaust it into a high-temperature block. This is
a refrigerator (Figure S1.37).

Consider how we keep food cold in an ordinary home refrigerator. A
reversed engine maintains the inside of the refrigerator at a low temperature
Ty, while the room is at a higher temperature 7. Although the door and walls
are heavily insulated, some energy does leak through from the room, and this
energy, O, must be removed to keep the food at a constant low temperature
Tr. We exhaust an amount of energy Qg into the room at temperature Ty. It
takes an amount of mechanical energy input M to achieve this effect of moving
energy out of the cold region and into the warm region.

In the most favorable case (no increase in total entropy) we have the
following two conditions stemming from entropy and energy considerations
(the high-temperature exhaust energy must equal the sum of the
low-temperature energy plus the work we put in to drive the cycle):

On 0Or

Ty T, and Oy=0QL+M
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Figure $1.38 Run the engine backward
and you have a heat pump.
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Here our view of “efficiency” shifts a bit. What we care about is how much
mechanical energy input M we have to do to remove an amount of leakage
energy Q; from the inside of the refrigerator.

QUESTION Show that the energy removal we get per amount of
work done is as follows:

Or 1

— = >1

M (Ty/Tp)-1

Isn’t this result somewhat surprising? Are we getting something for nothing
when @y, is bigger than the work M that we do? No, there’s no violation of
energy conservation. It’s just that Oy plus M equals the output energy Oy, and
we only have to add a modest amount of work to drive the energy “uphill.”

Heat Pump

A related device is the “heat pump” used in some areas to warm homes
by driving low-temperature energy “uphill” into a higher-temperature house.
Figure S1.38 shows a house whose interior is maintained at a temperature
Ty despite continual leakage Qg into the outside air. Energy Q; at low
temperature 7 is pumped out of the ground into the house, by the addition
of some work M that we do in an engine called a heat pump. This is somewhat
similar to the refrigerator situation, except that now what we care about is how
much high-temperature energy Oy we get per amount of work W done by the
heat pump.

QUESTION Show that this ratio is given by the following equation
for the heat pump:

M 1-(TL/Th)

Again, this feels like we’re getting something for nothing, since Qy is greater
than the work W that we do. After all, if you warm the house directly with gas or
oil or electric energy, you have to pay for every joule of leakage, not some small
fraction of the leakage. So why aren’t heat pumps much more commonly used
than they are? Basically because we’ve been calculating the best deal we can
possibly obtain (the case of the reversible engine —that is, one whose operation
leads to no increase in the total entropy of the Universe). Real engines running
either forward or reversed don’t attain the theoretical maximum performance,
as we will see in the next sections.

S1.8 *WHY DON’T WE ATTAIN
THE THEORETICAL EFFICIENCY?

In Checkpoint 7 you calculated the reversible-engine efficiency of an
actual nuclear-powered electricity generating plant to be 48%, but the
observed efficiency of this plant is only 30%. Real heat engines do not
attain the efficiency predicted by the second law of thermodynamics for ideal
reversible engines. In fact, the real efficiency is often only about half of the
theoretical efficiency. The reason for less than optimum performance in real
engines is partly due to mechanical friction, but this effect can be minimized
by good design and proper lubrication. The main limitation on performance
comes from the practical necessity of incorporating energy transfers between
parts of the system that are at significantly different temperatures, which
leads to sizable increases in the total entropy of the Universe, and to much
reduced efficiency.



S1-32 Supplement S1 Gases and Heat Engines

Source at Ty

Op=b(Ty~Ty)

T

Intermediate
temperatures

M=0py-0r

01 =b(T; - Ty)

Sink at 7,

Figure S1.39 A heat engine that runs ata
nonzero rate.

The problem is speed. As we saw earlier in the supplement, the rate
of energy transfer Q in joules per second between two objects (such as the
hot or cold block and the engine) at temperatures 7y and 77 connected by
some conducting material of length L and cross-sectional area A, with thermal
conductivity o is this:

: (Tu—Ty)
= A _—

Q=0 7

QUESTION Whatis the rate of energy transfer in a reversible

engine when in contact with the hot block or the cold block?

Alas, a reversible heat engine is totally impractical when it comes to getting
anything done in a finite amount of time, because the rate of energy transfer
is zero. If an engine is perfectly reversible, a cycle takes an infinite amount of
time!

Consider the portion of a heat engine’s cycle where the working substance
is in thermal contact with the high-temperature source. In order to carry out
the expansion quickly, there must be a high rate of energy transfer from the
source into the working substance. That means we need a large contact area
A, a short distance L, and a high thermal conductivity o. Most significant
of all, the temperature of the source (7) must be considerably higher than
the temperature of the engine, leading to irreversibility and increase of the
entropy of the Universe.

The Efficiency of a Nonreversible Engine

Suppose that when the engine is in contact with the high-temperature block
at temperature T, the engine is at a lower temperature 77, so that there
is a finite energy transfer rate into the engine of Q, = b(Ty — T}) joules
per second, where b is a constant that lumps together the factors of thermal
conductivity, cross-sectional area, and length (cA/L). Similarly, assume that
when the engine is in contact with the low-temperature block at temperature
Ty, the engine is at a higher temperature 75, so that there is a finite energy
transfer rate into the working substance of Q; = b(T, — T} ) joules per second.

Now the energy flow diagram looks like Figure S1.39, with an ideal
reversible engine running between the temperatures 77 and 7,, but with
irreversible finite-rate energy transfer between this reversible engine and the
source and sink at temperatures 7 and 7.

Energy enters the engine from the high-temperature source at a rate Q;,
work is done on the surroundings at a rate M, and energy is dumped into the
low-temperature sink at a rate O 1. All of these quantities are measured in
watts (joules per second). From energy conservation we have

Op=M+0r
This engine will necessarily be less efficient than a reversible engine due to
the irreversible energy transfers, as can be seen by noting that the engine is

effectively operating between a high temperature that is lower than T and a
low temperature that is higher than 7.

Refrigerators and Heat Pumps

Similar issues of efficiency apply to refrigerators and heat pumps. Energy leaks
into a refrigerator at some rate (joules per second) and must be removed by
“pushing it thermally uphill” to a higher temperature, the temperature of the
room. However, in order to have a nonzero rate of energy flow from the food
to the engine, the engine must reach an even lower temperature than the food,
with entropy-producing energy transfer from the food into the engine. Also,
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Figure S1.40 A refrigerator with nonzero
cooling rate.

Heat pump
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Figure S1.41 A heat pump with nonzero
energy transfer rate due to a temperature
difference.

Figure S1.42 A 2-D random walk,
generated by a computer program, using
random numbers and many steps.

S1.9 *Application: A Random Walk S1-33

in order for there to be a nonzero rate of energy flow from the engine to the
room air, the engine must reach an even higher temperature than the air, with
entropy-producing energy transfer from the engine into the air. Schematically
the situation looks like Figure S1.40.

Often a refrigerator or freezer has exposed coils (a “heat exchanger”)
where the energy transfer occurs between the working substance circulating
in the coils and the air. If you touch the coils, you find that they are indeed
much hotter than room temperature, in order to drive a sufficiently high rate
of energy transfer into the air. Notice not only that the heat exchanger must be
hotter than the air, but also that it is a rather large and costly device because
it has to have a large surface area to get a large rate of energy transfer.

In the case of heat pumps, where the heat pump picks up low-temperature
energy underground, the heat pump must reach an even lower temperature
in order to get a nonzero rate of energy flow from the ground into the engine.
Also, in order for there to be a nonzero rate of energy flow into the
house, the engine must reach an even higher temperature than the air, with
entropy-producing energy transfer from the engine into the air. The radiators
(heat exchangers) in the house must be considerably hotter than the air. There
is considerable expense in all the metal in the ground and in the house that
enables adequate energy transfer rate. Schematically the situation looks like
Figure S1.41.

So although a heat pump does have a theoretical advantage in warming
a house in part from energy in the cold ground, the expense of the heat
exchangers and the problems of going to rather low temperatures in the
ground are practical limitations, especially in very cold climates. Heat pumps
are more useful in climates where the winters are not too severe.

S$1.9 *APPLICATION: A RANDOM WALK

If you would find it useful to study one more application of the basic statistical
concepts underlying our analysis of a gas, here is an interesting one. If we
could watch one special molecule wandering around in the air, colliding
frequently with air molecules, its path would look something like Figure S1.42.
This kind of motion is called a “random walk.” It is somewhat surprising to
find that despite the random nature of this motion we can calculate something
significant about the motion, using simple statistical reasoning.

One Dimension

For simplicity, first we’ll consider just the x component of the motion. Pick the
origin of the x axis to be at the original position of the special molecule. The
first thing that happens is that the special molecule moves until it collides with
an air molecule. We call this first x component of the displacement Ax;.

This component of the displacement may be to the right (+x direction) or
to the left (—x direction). As a result of the collision, the special molecule may
change direction, and change speed. The next displacement before another
collision we call Ax;, and so on. After N collisions, the net displacement Ax
away from the origin is

Ax = Axy+ Axy + Axz+ Axq+ -+ Axn

After N collisions, what is the average (most probable) position of the special
molecule? On average, it is just as likely that it has moved to the right as moved
to the left, so the average x component of displacement ought to be zero. It is
easy to see that this will be the case, by taking the average value:

Ax = Ax|{ +Axy + Axz +---+Axy



S1-34 Supplement S1 Gases and Heat Engines

2
) X by 0
DL 1
1 X '
> Ay
(4*2\\ N i ,'IAZ
S~ MR '
,,,,,,,,,,,,,,,,,,,,,,,,,, ) ,::.‘}I
Ax

Figure S1.43 Pythagorean theorem in
three dimensions.

Each of the individual x displacements are equally likely to be to the left or
the right, so the average value of the nth x displacement (for n =1,2,3,...N)
is zero. Therefore the average value of the net x component of displacement
is also zero.

On average, after N collisions the special molecule ends up to the left
of the origin as often as it ends up to the right. However, we can ask the
question, “On average, how far away from the origin (along the x axis) does
the special molecule get, no matter whether it ends up to the left or the right?”
A good indicator of this distance is the average value of the square of the
net x displacement, (Ax)?, because that’s always a positive number. We can
calculate this average.

Since Ax = Axy + Axy + Axz + Axy +--- + Axpy, we have

(Ax)? = (Ax1)? + (Ax2)? + -+ + (Axy)? + 2AxAx,
+ 2Ax1Axz + 2Ax1Ax4 + -+

In this square of the net x displacement, there are two kinds of terms: squares
of individual x displacements such as (Ax;)? and “cross terms” like 2Ax; Ax;.
Given the random nature of the process, we expect that one-fourth of the time
both Ax; and Axj are positive (product is positive), one-fourth of the time
they’re both negative (product is positive), one-fourth of the time Ax; is
positive with Axz negative (product is negative), and one-fourth of the time
Ax1 is negative with Axs positive (product is negative). Therefore, the average
value of each cross term 2Ax;Ax; (i #J) is zero.

As for the other terms, the squares of individual x displacements such as
(sz)z, the average value of each of these terms is some number dxz, related
to d?, the square of the mean free path that we discussed in Section S1.3.

QUESTION Count up how many of these square terms there
are for N collisions and calculate the average value of the
square of the net displacement:

(Ax)2 =7

There are N of these terms, and the square root of this quantity is the
“root-mean-square” or “rms” value of the net displacement:

AXms = \/@ = (\/N)dx

We can also write this equation in terms of time. If we let v be the
average speed of the special molecule between collisions and we let T be
the average time between collisions, we have v = d/T. Also, the total time
t for the N collisions is t = NT.

QUESTION Rewrite the equation for the rms displacement
in terms of just dy, v, and ¢ (that is, eliminate N and T):
Axpms =7

We find that Axpms = /Ndydy = \/N(vT)d, = \/vdy\/t. This is a somewhat
curious result. For ordinary motion at constant speed, displacement increases
proportional to time: double the time, double the displacement. In contrast,
the rms displacement in a random walk grows with the square root
of the time: on average, the rms displacement doubles when the time
quadruples.

This calculation was done for the x component of the motion, but we can
generalize our result to real three-dimensional motion in a gas. Figure S1.43
shows a three-dimensional displacement involving Ax, Ay, and Az.
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You can see in Figure S1.43 a three-dimensional version of the
Pythagorean theorem for triangles. We can assume that the motion in each
dimension is independent of the motions in the other two dimensions, and we

have the following result:

/-
Arims =/ (B2 +(By)? + (A2)? = | [Nd + N} + N2 = (VN)d

(Here, d, is the component in the x direction of the three-dimensional mean

free path d.)

Writing the rms displacement in terms of the average speed v, the time ¢,

and the mean free path d, we have

This result is somewhat unusual, because it predicts (correctly, it turns out)
that for this random process the displacement from the starting location is

Arpms = \/@\/t

proportional to the square root of the time rather than to the time.

SUMMARY

KEY IDEAS

= We can model a gas as tiny balls in rapid random motion.

= Applying statistical ideas to this microscopic model
allows us to predict macroscopic relationships among
pressure, volume, and temperature, including the ideal
gas law.

= The definition of temperature in terms of entropy is
consistent with the everyday temperature scale.

= Both work and energy transfer due to a temperature
difference can change the temperature and/or volume of
a gas in a chamber with a movable piston.

= The attainable efficiency of engines that convert thermal
energy into useful work is constrained by the second law
of thermodynamics.

Mean free path d: n[n(R+r)*(d)] ~ 1
Root-mean-square speed: vims = V12
Work done on a gas: W= — J/lz Pav

First law of thermodynamics: AEgys = W+ Q

Molecular specific heat capacity at constant volume Cy:
0 =NCyAT

Molecular specific heat capacity at constant pressure Cp:
QO = NCpAT

Number of gas molecules hitting an area A per second =
%nAV (3-D; various speeds)

2 (P
P— gn (2]]1) —nkBT

where n = N/V (number of molecules per cubic meter)

For a multiatom gas molecule,
_ 3 — _
AEtot =A EkB T+ Erot + Evib

Cy= %kB for a monatomic gas (He, etc.)

Cy> %kg for other gases (N, etc.)

Cp = Cy+ kp (molecular specific heat capacity)

Cp = Cy + R (molar specific heat capacity)

In a constant-temperature (isothermal) compression,

Vi
Wby piston — Qinto surroundings — NkpTIn (Vz)

In a no-Q (adiabatic) compression,
PV = constant, where v = Cp/Cy, and also

T(Cv/kB)y — constant

kg =138x10-2BJ/K
R = (6.02 x 10%)kp = 8.3J/K

At “standard temperature and pressure” (STP,
which means a temperature of 0 °Celsius or 273 K,
and a pressure of 1 atm), one mole of a gas
occupies 22.4 L (a liter is 1000 cubic centimeters).

Sea-level pressure (1 atm)is 1 x 10° N/m?.

Rate of energy transfer due to a temperature
difference:

5 _gaTn=T1)

Q 7 )
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For a cyclic engine running between high temperature Ty
and low temperature 77 we have:

Entropy change of the universe for real heat engines:

9, Oy

AS Universe — TH TL

QUESTION

The efficiency of a real heat engine:

w
Efficiency = — <
YTou T T
The = sign applies only if the heat engine is reversible
(extremely slow processes, no friction). A heat engine run
in reverse is a refrigerator (or a heat pump).

Q1 How does the mean free path of an atom in a gas change
if the temperature is increased, with the volume kept constant?
Explain briefly.

PROBLEMS

Section S1.2

eeP2 Gas leaks at a rate L (in molecules per second) through a
small circular hole. If the density of the gas is doubled, the Kelvin
temperature is doubled, and the radius of the hole is doubled,
what is the new leak rate?

eeP3 Suppose that we make a circular hole 4 mm in diameter
in a balloon. Calculate the initial rate at which chlorine escapes
through the hole (at 0 °C), in number of chlorine atoms leaving
the balloon per second.

eeP4 What is the approximate time between collisions for one
particular air molecule?

eeP5 In an example problem in Section S1.2 we considered
leakage from a flexible party balloon. If the leakage is from a
rigid container (a metal storage tank, for example), the number
of atoms per cubic meter, n, will decrease with time ¢. If the total
volume of the tank is V, there are N = nV atoms in the tank at
any instant, so we can write the following “differential” equation
(that is, an equation that involves derivatives):

d 1
E(nV) = onAv

This says, “the rate of change of the number of atoms in the tank
is equal to the (negative) of the rate at which atoms are leaving
the tank.” (a) Show that the differential equation is satisfied if
the number density

n= ninitialei(Av/ v

where ¢ is the time elapsed since the hole was made. Just plug
this function of n, and its derivative, into the equation and show
that the two sides of the equation are equal for all values of the
time ¢. Also show that the initial particle density # is equal to
Hinitial- (b) Despite the fancy math, this solution is really only
approximate, because the average speed isn’t a constant but
is decreasing. Suppose, however, that we use a heater to keep
the container and the gas at a nearly constant temperature, so
that the average speed does remain nearly constant. Suppose that
the (rigid) container is again a sphere 30 cm in diameter, with a
circular hole 1 mm in diameter. About how long would it take for
most of the helium to leak out? Explain your choice of what you
mean by “most.”

eeP6 Natural uranium ore consists mostly of the isotope U-238
(92 protons and 146 neutrons), but 0.7% of the ore consists of
the isotope U-235 (92 protons and 143 neutrons). Because only
U-235 fissions in a reactor, industrial processes are used to enrich
the uranium by enhancing the U-235 content.

One of the enrichment methods is “gaseous diffusion.” The
gas UFg, uranium hexafluoride, is manufactured from supplies
of natural uranium and fluorine (each of the 6 fluorine atoms
has 9 protons and 10 neutrons). A container is filled with UFg
gas. There are tiny holes in the container, and gas molecules
leak through these holes into an adjoining container, where
pumps sweep out the leaked gas. (a) Explain why the gas that
initially leaks into the second container has a slightly higher
fraction of U-235 than is found in natural uranium. (b) Estimate
roughly the practical change in the concentration of U-235 that
can be achieved in this single-stage separation process. Explain
what approximations or simplifying assumptions you have made
to obtain your estimate. (¢) A typical nuclear reactor requires
uranium that has been enriched to the point where about 3% of
the uranium is U-235. Estimate roughly the number of stages of
gaseous diffusion required (that is, the number of times the gas
must be allowed to leak from one container into another). Note
that the effects are multiplicative.

This is why a practical gaseous diffusion plant has a large
number of stages, each operating at high pressure, which makes
this an expensive process. The first large gaseous diffusion plant
was constructed during World War II at Oak Ridge, Tennessee,
and used inexpensive Tennessee Valley Authority electricity.

eeP7 You are on a spacecraft measuring 8 m by 3 m by 3 m when
it is struck by a piece of space junk, leaving a circular hole of
radius 4 mm, unfortunately in a place that can be reached only
by making a time-consuming spacewalk. About how much time
do you have to patch the leak? Explain what approximations you
make in assessing the seriousness of the situation.

Section S1.4

eeP8 A roughly spherical meteor made mainly of iron (density
about 8 g/cm3) is hurtling downward through the air at low
altitude. At an instant when its speed is 1 x 10* m/ s, calculate
the approximate rate of change of the meteor’s speed. Do the
analysis for two different meteors—one with a radius of 10 m
and one with a radius of 100 m.



Start from fundamental principles. Do not try to use some
existing equation that applies to a very different situation. Follow
the kind of reasoning used in this supplement, applied to the new
situation, rather than trying to use the results of this supplement.

A major difference from our earlier analyses is that the meteor
is traveling much faster than the average thermal speed of the
air molecules, so it is a good approximation to consider the air
molecules below the meteor to be essentially at rest, and to
assume that no air molecules manage to catch up with the meteor
and hit it from behind. The meteor drills a temporary hole in the
atmosphere, a vacuum, that gets filled explosively by air rushing
in after the meteor has passed.

There is good evidence that a very large meteor, perhaps
10 km in diameter, hit the Earth near the Yucatan Peninsula
in southern Mexico 65 million years ago and caused so much
damage that the dinosaurs became extinct. See the excellent
account in 7. rex and the Crater of Doom, by Walter Alvarez
(Princeton University Press, 1997). Alvarez is the geologist who
made the first discoveries leading to our current understanding
of this cataclysmic event.

P9 A rigid, thermally insulated container with a volume of
22.4 L is filled with one mole of helium gas (4 g per mole) at a
temperature of 0 C (273 K). The container is sitting in a room,
surrounded by air at STP. (a) Calculate the pressure inside the
container in N/ m?. (b) Calculate the root-mean-square average
speed of the helium atoms. (¢) Now open a tiny square hole
in the container, with area 1 x 1078 m? (the hole is 0.1 mm
on a side). After 5 s, how many helium atoms have left the
container? (d) Air molecules from the room enter the container
through the hole during these 5 s. Which is greater, the number
of air molecules that enter the container or the number of
helium atoms that leave the container? Explain briefly. (e) Does
the pressure inside the container increase slightly, stay the
same, or decrease slightly during these 5 s? Explain briefly.
If you have to make any simplifying assumptions, state them
clearly.

Section S1.5

*P10 If you expand the volume of a gas containing N molecules
to twice its original volume, while maintaining a constant
temperature, how much energy transfer due to a temperature
difference is there from the surroundings?

P11 If you compress a volume of helium containing N atoms to
half the original volume in a well-insulated cylinder, what is the
ratio of the final pressure to the original pressure?

*eP12 A mole of nitrogen is compressed (by piling lots of sand
on the piston) to a volume of 12 L at room temperature (293 K).
The cylinder is placed on an electric heating element whose
temperature is maintained at 293.001 K. A quasistatic expansion
is carried out at constant temperature by very slowly removing
grains of sand from the top of the piston, with the temperature of
the gas staying constant at 293 K. When the volume is 18 L, how
much energy transfer Q has gone from the heating element into
the gas? How much work W has been done on the piston by the
gas? How much has the energy of the gas changed?

(You must assume that there is no energy transfer from the
gas to the surrounding air, and no friction in the motion of
the piston, all of which is pretty unrealistic in the real world!
Nevertheless there are processes that can be approximated by a
constant-temperature expansion. This problem is an idealization
of a real process.)

Problems S1-37

*eP13 Two moles of nitrogen is compressed (by piling lots of
sand on the piston) to a volume of 11 L at room temperature
(293 K). The cylinder is placed on an electric heating element
whose temperature is maintained at 293.001 K. A quasistatic
expansion is carried out at constant temperature by very slowly
removing grains of sand from the top of the piston, with the
temperature of the gas staying constant at 293 K. (You must
assume that there is no energy transfer due to a temperature
difference from the gas to the surrounding air, and no friction
in the motion of the piston, all of which is pretty unrealistic
in the real world! Nevertheless there are processes that can
be approximated by a constant-temperature expansion. This
problem is an idealization of a real process.) (a) When the
volume is 20 L, how much energy transfer Q has gone from the
heating element into the gas? (b) How much work W has been
done on the piston by the gas? (¢) How much has the energy of
the gas changed?

eeP14 Atmospheric pressure at sea level is about 1 x 10° N /m?,
which is about 15 pounds per square inch (psi). A bicycle tire
typically is pumped up to 50 psi above atmospheric pressure
(psi “gauge”), for an actual pressure of about 65 psi. In
rapidly pumping up a bicycle tire, starting from atmospheric
pressure, about how high does the temperature of the air
rise? Explain what approximations and simplifying assumptions
you make.

eeP15 A horizontal cylinder 10 cm in diameter contains helium
gas at room temperature and atmospheric pressure. A piston
keeps the gas inside a region of the cylinder 20 cm long. (a) If you
quickly pull the piston outward a distance of 12 cm, what is the
approximate temperature of the helium immediately afterward?
What approximations did you make? (b) How much work did
you do, including sign? (Note that you need to consider the
outside air as well as the inside helium in calculating the amount
of work you do.) (¢) Immediately after the pull, what force must
you exert on the piston to hold it in position (with the helium
enclosed in a volume that is 20 + 12 = 32 cm long)? (d) You
wait while the helium slowly returns to room temperature,
maintaining the piston at its current location. After this wait,
what force must you exert to hold the piston in position?
(e) Next, you very slowly allow the piston to move back into
the cylinder, stopping when the region of helium gas is 25 cm
long. What force must you exert to hold the piston at this
position? What approximations did you make?

Section S1.6

P16 An aluminum bar 30 cm long and 3 cm by 4 cm on its sides
is connected between two large metal blocks at temperatures
of 135 °C and 20 °C, and energy is transferred from the hotter
block to the cooler block at a rate Q. If instead the two blocks
were connected by an aluminum bar that is 20 cm long and
3 cm by 2 cm on its sides, what would be the energy transfer
rate?

eeP17 The thermal conductivity of copper (a good
thermal conductor) is 400 W/K/m (for comparison, the
thermal conductivity of iron is about 70 W/K/m, and that of
glass is only about 1 W/K/m). One end of a copper bar 1 cm
on a side and 30 cm long is immersed in a large pot of boiling
water (100 °C), and the other end is embedded in a large block
of ice (0 °C). It takes about 3357J to melt 1 g of ice. How long
does it take to melt 1 g of ice? Does the entropy of the Universe
increase, decrease, or stay the same?
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Section S1.7

*P18 What is the efficiency of a reversible engine if the source
is a large container of boiling water and the sink is a large block
of melting ice?

*P19 Suppose that the temperature underground from where
we draw low-temperature energy for a heat pump is about 5 °C,
and we want to keep the house at a temperature of 20 °C. How
many joules of work must our heat pump supply for every joule
of leakage of energy there is out of the house?

eeP20 A (nearly) reversible engine is used to melt ice as well
as do some useful work. If the engine does 1000 J of work
and dumps 400 J into the ice, what is the temperature of the
high-temperature source?

eeP21 In one cycle of a reversible engine running between
a high-temperature source and a low-temperature sink, a
consequence of the second law of thermodynamics is that
Qpn/Ty = QOp/Tr. This result is independent of what kind
of material the engine contains. It is instructive to check this
general result for a specific model where we can calculate
everything explicitly. Consider a reversible cycle of an ideal

ANSWERS TO CHECKPOINTS

gas of N molecules, starting at high temperature 7y and
volume Vi. (a) Perform a constant-temperature (isothermal)
expansion to volume V), and calculate the associated energy
transfer Qy into the gas. (b) Next perform a no-Q (adiabatic)
expansion to volume V3 and temperature 7 . (¢) Next perform
a constant-temperature (isothermal) compression to volume Vy,
and calculate the associated energy transfer Q; out of the gas.
(d) Finally perform a no-Q (adiabatic) compression back to the
starting state, temperature 7 and volume V.

eeP22 Suppose that there is a leakage rate of 50 W through the
insulation into a refrigerator, which we maintain at 3 °C. What
is the minimum electric power required to continually remove
this leakage energy, to maintain the low temperature? In that
case, what is the rate at which energy is exhausted into the room?
Room temperature is about 20 °C.

Section S1.9

eeP23 As you have calculated, the average speed of an air
molecule at room temperature is about 500 m/s, and we saw in
Section S1.3 that the mean free path is about 7 x 10~ m. What
is Arms for an air molecule after 1 s?

1 T decreases because average v decreases.
2 1 x 10% molecules per second
3L~3x10""m

41x10°N/m?

5 3kp+kg=3kp

Py \o/ke
Nkg
PCv/ksyCv/ks+l — pew constant
Take (Cy/kp) root :
pyltks/Cv _ py(Cv+ks)/Cv _ pyCr/Cy

6 V = constant

7 0.48



