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• Main topics covered:

• Rotational Motion:
• Rotational Variables.
• Angular Momentum.

• Equilibrium:
• Conditions for Equilibrium.

• Harmonic Motion:
• Properties of Simple Harmonic Motion
• Requirements for Simple Harmonic Motion
• Damped Harmonic Motion
• Driven Harmonic Motion
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Review Physics 121
Midterm Exam # 3

• Warning:

• Use this review at your own risk.

• I can not cover everything we discussed in 8 lectures in the period
allocated for this review.

• If I leave out certain topics in this review, this does not imply that
these topics will not be covered on the exam!

• The material covered on the exam is the material covered in Chapters
10, 11, 12, and 14 of our text book.
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Review Physics 121
Midterm Exam # 3

• Note:

• I expect to be interrupted!

• The TAs will see the exam for the first time at the same time you do
(on Tuesday morning at 8 am).  They are certainly telling you the
truth if they state that they do not know what is being covered on the
exam.
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Rotational Motion

• There are many similarities between linear and rotational
motion.

• If you really understand linear motion, understanding
rotational motion should be easy.

• The concepts of moment of inertia, torque, and angular
momentum are defined such as to preserve the similarities
between linear and rotational motion.

• I will start this review with focusing on a detailed
comparison between linear and rotational motion.
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Rotational Motion.
Variables

• In our discussion of rotational
motion we will first focus on the
rotation of rigid objects around a
fixed axis.

• The variables that are used to
describe this type of motion are
similar to those we use to
describe linear motion:

• Angular position
• Angular velocity
• Angular acceleration
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Rotational Variables.
Position.

• In order to specify the position of
a point we need to specify our
reference point/axis.

• Linear position:
• Specify the vector required to

move from the origin of the
coordinate system to point P.

• Unit: m

• Angular position:
• Specify the rotation angle

required to rotate from the the
reference line to point P.

• Unit: rad
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Rotational Variables.
Velocity.

• Velocity is a measure of how
quickly the position changes.

• Linear velocity:

• Definition: v = dr/dt
• Symbol: v
• Units: m/s

• Angular velocity:

• Definition: ω = dθ/dt
• Symbol: ω
• Units: rad/s
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Direction of the Angular Velocity.
User your Right Hand!

Angular velocity is a vector!
It has a magnitude and a direction.
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Rotational Variables.
Acceleration.

• Acceleration is a measure of how
quickly the velocity changes.

• Linear acceleration:

• Definition: a = dv/dt = d2r/dt2

• Symbol: a
• Units: m/s2

• Angular acceleration:

• Definition: α = dω/dt = d2θ/dt2

• Symbol: α
• Units: rad/s2

Frank L. H. Wolfs Department of Physics and Astronomy, University of Rochester

Rotational Variables.
Acceleration.

The angular acceleration is parallel or anti-parallel to the
angular velocity:

If ω increases: parallel
If ω decreases: anti-parallel
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Summary of Rotational Variables.

Definition Linear Variable

Angular Position ! l = R!

Angular Velocity " =
d!

dt
v = R"

Angular Acceleration # tan =
d

2
!

dt
2

atan = R# tan
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Equations of Rotational Motion.
Constant Acceleration.

Rotationional Motion Linear Motion

Acceleration !(t) = ! a(t) = a

Velocity " (t) ="0 +!t v(t) = v0 + at

Position # = #0 +"0t +
1

2
!t

2
x(t) = x0 + v0t +

1

2
at

2

Frank L. H. Wolfs Department of Physics and Astronomy, University of Rochester

Rotational Variables.
Kinetic Energy.

• The kinetic energy of an object is
proportional to the square of its
velocity.

• Linear kinetic energy:

• Definition: K = (1/2)mv2

• Unit: kg m2/s2 or J

• Rotational kinetic energy:

• Definition: K = (1/2)Iω2

• Unit: kg m2/s2 or J
• I is the moment of inertia of the

mass distribution.
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The Moment of Inertia.
Calculating I.

• The moment of inertia of an
objects depends on the mass
distribution of object and on the
location of the rotation axis.

• For discrete mass distribution it
can be calculated as follows:

• For continuous mass distributions
we need to integrate over the
mass distribution:

  I = m
i
r

i

2

!
i

 
I = r

2
dm
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Rotational Variables.
Force and Torque.

• Linear motion:

• The linear acceleration is
proportional to the applied force.

• F = ma
• Unit: N

• Rotational motion:

• The angular acceleration is
proportional to the torque.

• The torque is defined as the vector
products r x F.

• Unit: Nm
• τ = Iα for a rigid object, where I is

the moment of inertia of the mass
distribution.
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Rotational Variables.
Linear and Angular Momentum.

• Linear Momentum:

• Defined: p = mv
• Units: kg m/s
• Total linear momentum is

conserved if the net external force
is 0 N.

• Angular Momentum:

• Defined: L = r x p
• For rigid object: L = Iω
• Unit: kg m2/s
• Total angular momentum is

conserved is the net external
torque is 0 Nm.
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Rotational Variables.
Make sure you know your references!

• The moment of inertia is
calculated with respect to a
specific rotation axis.

• The torque and angular
momentum are calculated with
respect to a specific reference
point.
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Rolling Motion.

• Rolling motion is a combination
of translational and rotational
motion.

• The kinetic energy of rolling
motion has thus two
contributions:

• Translational kinetic energy =
(1/2) M vcm

2.

• Rotational kinetic energy =
(1/2) Icm ω 2.

• Assuming the wheel does not
slip: ω = v / R.
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Rolling Motion.
Effect of Moment of Inertia on Motion.

• Initial mechanical energy = mgH.

• Final mechanical energy =
(1/2) m vcm

2 + (1/2) Icm ω  2.

• Assuming no slipping, we can
rewrite the final mechanical
energy as (1/2){m+Icm / R2} vcm

2.

• Conservation of energy implies:
(1/2){m+Icm / R2} vcm

2 = mgH
or

(1/2){1+Icm / mR2} vcm
2 = gH

The smaller Icm, the larger vcm
at the bottom of the incline.
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Rolling motion causes much confusion!

Two views of rolling motion: 1) Pure rotation around
the instantaneous axis or 2) rotation and translation.
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Rolling motion causes much confusion!

Note: friction provides the
torque with respect to the 
center-of-mass.
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A Final Note about Angular Momentum.
• The connection between the

angular momentum L and the
torque τ

is only true if L and τ are
calculated with respect to the
same reference point (which is at
rest in an inertial reference
frame).

• The relation is also true if L and τ
are calculated with respect to the
center of mass of the object (note:
center of mass can accelerate).

   
!! =

dL

dt
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Equilibrium.

• An object is in equilibrium is the
following conditions are met:

Net force = 0 N (first condition for
equilibrium)

and

Net torque = 0 Nm (second
condition for equilibrium)

• Note: both conditions must be
satisfied.  Even if the net force is
0 N, the system can start to rotate
if the net torque is not equal to 0
Nm.
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Static Equilibrium.

• What happens when the net force is equal to 0 N?

• P = constant

• What happens when the net torque is equal to 0 Nm?

• L = constant

• We conclude that an object in equilibrium can still move
(with constant linear velocity) and rotate (with constant
angular velocity).

• Conditions for static equilibrium:

• P = 0 kg m/s
• L = 0 kg m2/s
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Equilibrium.
Summary of Conditions.

• Equilibrium in 3D:

• Equilibrium in 2D:

   F
x

= 0! !
x

= 0!

Fy = 0! and !
y

= 0!

F z = 0! !
z

= 0!

   F
x

= 0!

F y = 0!

!
z

= 0!
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Equilibrium.
Be sure to include all forces!!!

• When evaluating conditions for
equilibrium, you need to make
sure to include all forces acting
on the system.

• In the system shown in the
Figure, there are more forces
acting on the system than the
forces indicated.  For example,
there should be an upward force
to balance the downward forces.

• Of course, the problem is how to
apply the equilibrium conditions
correctly.



10

Frank L. H. Wolfs Department of Physics and Astronomy, University of Rochester

Stress and Strain.
The Effect of Applied Forces.

• When we apply a force to an
object that is kept fixed at one
end, its dimensions can change.

• If the force is below a maximum
value, the change in dimension is
proportional to the applied force.
This is called Hooke’s law:

F = k ΔL

• This force region is called the
elastic region.
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Stress and Strain.
The Effect of Applied Forces.

• When the applied force increases
beyond the elastic limit, the
material enters the plastic region.

• The elongation of the material
depends not only on the applied
force F, but also on the type of
material, its length, and its cross-
sectional area.

• In the plastic region, the material
does not return to its original
shape (length) when the applied
force is removed.
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Stress and Strain.
The Effect of Applied Forces.

• The elongation ΔL can be
specified as follows:

where

L0 = original length

A = cross sectional area

E = Young’s modulus

• Stress is defined as the force per
unit area (= F/A).

• Strain is defined as the fractional
change in length (ΔL0/L0).

!L=
1

E

F

A
L
0

Note: the ratio of stress to strain 
is equal to the Young’s Modulus.
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Harmonic Motion.
Motion that repeats itself at regular intervals.
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Simple Harmonic Motion.

  x(t) = x
m

cos(! t + ")

Amplitude

Phase Constant

Angular Frequency
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Simple Harmonic Motion.

• Other variables frequently used to
describe simple harmonic
motion:

• The period T: the time required to
complete one oscillation. The
period T is equal to 2π/ω.

• The frequency of the oscillation is
the number of oscillations carried
out per second:

ν = 1/T

The unit of frequency is the Hertz
(Hz).  Per definition, 1 Hz = 1 s-1.



12

Frank L. H. Wolfs Department of Physics and Astronomy, University of Rochester

Simple Harmonic Motion.
What Forces are Required?

• Using Newton’s second law we can determine the force
responsible for the harmonic motion:

F = ma = -mω2x

• The total mechanical energy of a system carrying out simple
harmonic motion is constant.

• A good example of a force that produces simple harmonic
motion is the spring force: F = -kx.  The angular frequency
depends on both the spring constant k and the mass m:

ω = √ ( k/m)
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Simple Harmonic Motion (SHM).
The Equation of Motion.

• All examples of SHM were derived from he following
equation of motion:

• The most general solution to the equation is

• SHM will occur when A = B.

  d
2
x

dt
2

= - !
2

x

  x(t) = A cos(! t + ") + B sin(! t + #)
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Damped Harmonic Motion.

• Consider what happens when in addition to the restoring
force a damping force (such as the drag force) is acting on
the system:

• The equation of motion is now given by:

 
F = - k x - b

dx

dt

 d
2
x

dt
2

+
b

m

dx

dt
+

k

m
x = 0
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Damped Harmonic Motion.

• The general solution of this equation of motion is

• There are two possible values of the angular velocity:

• The solution to the equation of motion is thus given by

  

! =
1

2
i

b

m
± 4

k

m
-

b
2

m
2

"
1

2
i

b

m
±

k

m

  
x(t) ! x m exp -

b t

2 m
exp i t

k

m

SHM TermDamping Term

  x(t) = A exp i ! t
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Damped Harmonic Motion.

• Let’s examine the general
solution in more detail:

• The general solution contains a
SHM term, with an amplitude
that decreases as function of time.

• The mechanical energy
associated with the damped HM
will decrease as function time:

  
x(t) ! x m exp -

b t

2 m
exp i t

k

m

 
E(t) =

1

2
k x m

2
exp –

b t

m
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Driven Harmonic Motion.

• Consider what happens when we apply a time-dependent
force F(t) to a system that normally would carry out SHM
with an angular frequency ω0.

• Assume the external force F(t) = mF0sin(ωt).  The equation
of motion can now be written as

• The steady state motion of this system will be harmonic
motion with an angular frequency equal to the angular
frequency of the driving force.

  d
2
x

dt
2

= - !
0

2
x + F

0
sin(! t)
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Driven Harmonic Motion.

• Consider the general solution

• The amplitude is equal to

• The phase angle must satisfy the following relation:

This requires that φ = 90° or 270°.

  x(t) = A cos(! t + ")

  

A =

F
0

!
0

2
- !

2

  cos(!) = 0
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Driven Harmonic Motion.

• If the driving force has a
frequency close to the natural
frequency of the system, the
resulting amplitudes can be very
large even for small driving
amplitudes.  The system is said to
be in resonance.

• In realistic systems, there will
also be a damping force.
Whether or not resonance
behavior will be observed will
depend on the strength of the
damping term.
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Final Remarks

• The hardest part of each problem is recognizing the
approach to take.  Different approaches may lead to the
same answer, but can differ greatly in difficulty.

• A suggestion:
• Look at the end of chapter problems.  There is only a limited number

of types of question one can ask.
• But ……. Since the questions are grouped by section, you know

already what approach to use based on the section to which the
problems are assigned.

• Some students benefit from copying the questions, cutting them out,
writing the chapter/section numbers on the back, mixing them up, and
then reading through them and determining what approach you would
take if you would see that question on the exam (compare it with the
focus of the section to which the problem was assigned).
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Final Remarks

• You will only need your pen, a pencil, and an eraser.  Being
awake might also help!

• The TAs will have extra office hours on Monday.  Please go
and see them if you need to resolve any last-minute
questions.

• The exam will start at 8 am and end at 9.30 am.  If you show
up late you will just have less time to finish.  Over the years
I have heard every excuse possible for being late, but I have
never heard one that I accepted.

Good luck preparing for the exam.


