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• Course Information

• Topics to be discussed today:

• Heat

• First law of thermodynamics

• Second law of thermodynamics

• Quiz
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• Homework set # 10 is now available and is due on
Wednesday evening, April 30, at 11.30 pm.

• Exam # 3 will be returned in workshop, starting today.
Note: grading of the exams will not be completed until
Sunday and exam grades will be distributed via email on
Monday.

• On Monday I will also distribute information about the
score you need to obtain on the final exam to get a C-, a B-,
and an A- in this course.

• The final exam will be held on Thursday May 8 between 4
pm and 7 pm in Hubbell.  The final exam will cover all the
material discussed in the course; there will be NO particular
focus on thermodynamics.
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Physics 121.
Homework Set 10.

Thermal Expansion

Heat and 
Temperature

Heat and 
Temperature

Ideal Gas Law

Heat
Conduction

First Law of
Thermodynamics

Kinetic Theory 
of Gases.
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Physics 121.
Post-Test - Tuesday 4/29 at 8.45 am.

• The post-test is scheduled for Tuesday morning, 8.45 am in
Hoyt (not Hubbell).

• The post-test, in comparison to your pre-test, will provide
me with important information about your progress in
Physics 121.  It is a required component of the course.

• Although this test does not count towards your final grade, I
will use it to confirm my final grade assignment (especially
in border-line cases).

• You will receive an email from me showing a comparison
between your pre-test and your post-test, indicating how
much you have learned.



Frank L. H. Wolfs Department of Physics and Astronomy, University of Rochester

Heat and thermal equilibrium.

• When two objects are brought in thermal contact they can achieve
thermal equilibrium via the exchange of heat.

• The exchange of heat will continue until the two objects have the same
temperature.

• Energy can also be exchanged if work is done.
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Heat.

• We commonly use Q to indicate the amount of heat
transferred.

• Since heat is a form of energy, its unit is the Joule.

• Another commonly used unit for heat is the calorie.  One
calorie is defined as the mount of heat required to raise the
temperature of 1 g of water from 14.5°C to 15.5°C.
1 cal = 4.186 J.
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Transfer of heat.

• Heat can be transferred in a number of different ways:

• Conduction: transfer of heat via molecular collisions.  Usually the
dominant mechanism for heat transfer in metals.

• Convection: transfer of heat of mass movement of molecules.
Usually the dominant mechanism of heat transfer in liquids and gases.

• Radiation: transfer of heat using electromagnetic radiation (e.g.
light).

• We will now briefly discuss each of these mechanisms in
more detail.
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Transfer of heat.
Conduction.

• The rate of heat transfer (Q/t) via
conduction depends on

• The temperature difference ΔT

• The cross section area A

• The length of the conductor l

• The properties of the material

• The following expression for Q/t
was found experimentally:

 
H =

Q
t

= k A
TH - TC

L
Thermal Conductivity
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Transfer of heat.
Conduction.

• Large values of k (200 - 400
J/(s  m  °C) occur for good heat
conductors.

• Poor conductors have small
values of k (0.01 - 1 J/(s m °C).

• Instead of the thermal
conductivity, we often specify the
thermal resistance R for
insulators:

R = l/k
• R is called the R value of the

insulator.

 
H =

Q
t

= k A
TH - TC

L
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Transfer of heat.
Convection.

• Convection transfers heat by the
mass movement of molecules
from one location to another
location.

• The driving force behind
convection is thermal expansion,
which results in a decrease in
density with an increase in
temperature.
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Transfer of heat.
Radiation.

• Conduction and convection
require a medium to transfer heat.

• If the medium is absent, heat can
still be transferred, but only via
radiation.

• Good example of transfer of heat
via radiation:

• The sunlight that heats up the
earth.

• Infra-red radiation allowing us to
see in the dark.

Courtesy of Inframetrics 

Courtesy of Meditherm
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Heat and heat capacity.

• When heat is added to an object,
its temperature will increase:

• The coefficient C is the heat
capacity of the object.  It depends
on the type and the amount of
material used.

• In order to remove the
dependence on the amount of
material, we prefer to use the heat
capacity per unit mass c:

 Q = C Tf -T i

Q = c m Tf - Ti
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Latent heat.

• When heat is added to a solid or a
liquid, the temperature of the
sample does not necessarily rise.

• During a phase change (melting,
boiling) heat is added to the
sample without an increase in
temperature.

• The amount of heat transferred
per mass unit during a phase
change is called the heat of
transformation L:

 Q = L m

Phase Change
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First law of thermodynamics.

• Consider a closed system:

• Closed system
• No change in mass
• Change in energy allowed (exchange with environment)

• Isolated system:
• Closed system that does not allow an exchange of energy

• The internal energy of the system can change and will be
equal to the heat added tot he system minus the work done
by the system: ΔU = Q - W

• Note: keep track of the signs:
• Heat: Q > 0 means heat added, Q < 0 means heat lost
• Work: W > 0 mean work done by the system, W < 0 means work

done on the system
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First law of thermodynamics.
Isothermal processes.

• An isothermal process is a process
in which the temperature of the
system is kept constant.

• This can be done by keeping the
system in contact with a large heat
reservoir and making all changes
slowly.

• Since the temperature of the system
is constant, the internal energy of
the system is constant (ΔU = 0 J).

• The first law of thermodynamics
thus tells us that Q = W.
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First law of thermodynamics.
Adiabatic processes.

• An adiabatic process is a process
in which there is no flow of heat
(the system is an isolated
system).

• Adiabatic processes can also
occur in non-isolated systems, if
the change in state is carried out
rapidly.  A rapid change in the
state of the system does not allow
sufficient time for heat flow.

• The expansion of gases differs
greatly depending on the process
that is followed (see Figure).
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First law of thermodynamics.
Isobaric and isochoric processes.

• Isobaric processes:

• Processes in which the pressure is
kept constant.

• Isochoric processes:

• Processes in which the volume is
kept constant.
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Work done during expansion/compression.

• Consider an ideal gas at pressure
p.

• The gas exerts a force F on a
moveable piston, and F = pA.

• If the piston moves a distance dl,
the gas will do work:

dW = Fdl

• The work done can be expressed
in terms of the pressure and
volume of the gas:

dW = pAdl = pdV
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Work done during expansion/compression.

• The work done during the
expansion of a gas is equal to the
area under the pV curve.

• Since the shape of the pV curve
depends on the nature of the
expansion, so does the work
done:

• Isothermal: W = nRT ln(VB /VA )

• Isochoric: W = 0

• Isobaric: W = pB (VB - VA)
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First law of thermodynamics.
Molecular specific heat.

• When we add heat to a system, its temperature will increase.
• For solids and liquids, the increase in temperature is

proportional to the heat added, and the constant of
proportionality is called the specific heat of the solid or liquid.

• When we add heat to a gas, the increase in temperature will
depend on the other parameters of the system.  For example,
keeping the volume constant will results in a temperature rise
that is different from the rise we see when we keep the pressure
constant (the heat capacities will differ):
• Q = nCVΔT (Constant Volume)
• Q = nCPΔT (Constant Pressure)

Here, CV and CP are the molecular specific heats for constant
volume and constant pressure. And n is the number of moles of
gas.
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First law of thermodynamics.
Molecular specific heat (p = const.).

• Consider what happens when we
add Qp to the system while
keeping its pressure constant.

• The work done by the gas will be
pΔV.

• Using the ideal gas law, we can
rewrite the work done by the gas
as p(nRΔT/p) = nRΔT.

• The change in the internal energy
of the gas is thus equal to
ΔU = Qp - nRΔT = nCPΔT - nRΔT
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First law of thermodynamics.
Molecular specific heat (V = const.).

• Consider what happens when we
add QV to the system while
keeping its pressure constant.

• The work done by the gas will be
pΔV = 0 J.

• The change in the internal energy
of the gas is thus equal to
ΔU = QV = nCVΔT

• Note: we also know that U(ΔT) =
(3/2)nRΔT and we can thus
conclude that CV = (3/2)R.
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First law of thermodynamics.
Molecular specific heat.

• Compare the two previous
results:

ΔU = nCPΔT - nRΔT

ΔU = nCVΔT

• If in both cases the temperature
changes by the same amount ΔT
the change in the internal energy
ΔU will also be the same.

• We thus conclude that
CP - R = CV or CP - CV = R.
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First law of thermodynamics.
The internal energy.

• Up to now we have assumed that the
internal energy U of a gas is equal to
(3/2)kT.

• This is correct for a monatomic gas, but is
not correct for diatomic or triatomic
gases.

• It turns out that each degree of freedom
carried an internal energy of (1/2)kT.

• Predictions for a diatomic molecule:
• Linear motion: 3 degrees of freedom.
• Rotational motion: 2 degrees of freedom.
• Vibrational motion: 2 degrees of freedom.

• The number of degrees of freedom
excited depend on the temperature.
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First law of thermodynamics.
Using CV to measure the degrees of freedom.
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Second law of thermodynamics.

• There are several different forms
of the second law of
thermodynamics:

• It is not possible to completely
change heat into work with no
other change taking place.

• Heat flows naturally from a hot
object to a cold object; heat will
not flow spontaneously from a
cold object to a hot object.

• Many naturally processes do not
violate conservation of energy
when executed in reverse, but
would violate the second law.
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Second law of thermodynamics.
Heat engines.

• Most engines rely on a
temperature difference to operate.

• Let’s understand why:

• The steam pushes the piston to the
right and does work on the piston:

Win = nRTin(1-Vin/Vout)

• To remove the steam, the piston
has to do work on the steam:

Wout = nRTout(1-Vout/Vin)

• If Tin = Tout: Win + Wout = 0 (no
net work is done).

• In order to do work Tin > Tout and
we must thus cool the steam
before compression starts.
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Second law of thermodynamics.
Heat engines.

• The efficiency of an engine is defined
as the ratio of the heat extracted from
the hot reservoir and the work done:

Efficiency = | W | / | QH |

• Because of the second law, no engine
can have a 100% efficiency!

• Note: the cost of operation does not
only depend on the cost of maintaining
the high temperature reservoir, but
may also include the cost of
maintaining the cold temperature
reservoir.
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Second law of thermodynamics.
Heat pumps.

• In many cases (heat engines), the
conversion of flow of heat to
work is the primary purpose of
the engine (e.g. the car engine).

• In many other applications (heat
pumps), work is converted to a
flow of heat (e.g. air
conditioning).
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Second law of thermodynamics.
Heat pumps.

Note: you can not cool your house by opening the door of
your refrigerator!
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Second law of thermodynamics.
Heat pumps.

Note: You usually pay for the work done but not for the heat 
extracted from the outside.  You can thus get more energy
than what you pay for!
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Second law of thermodynamics.
Heat pumps.

• Heat pumps:

• The heat capacity increases with
increasing outside temperature.

• Additional heaters may be
required in colder climates.

• The heat capacity can also be
increased by changing the source
of heat from the air to the ground.

http://irc.nrc-cnrc.gc.ca/cbd/cbd195e.html

http://www.bchydro.com/powersmart/elibrary/elibrary685.html
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Second law of thermodynamics.
Heat pumps.

• Heat pumps:

• Heaters in the winter: take heat
from the outside to the inside.

• Air conditioners in the summer:
take heat from the inside to the
outside.
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Physics 121.
Quiz lecture 25.

• The quiz today will have 3 questions!
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Done for today!
On Tuesday: The second law and entropy.

The four gyroscopes of the international space station.


