Red Sox - Yankees. Baseball can not get
more exciting than these games.
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

Physics 121.
April 17, 2008.

Physics 121.
April 17, 2008.

- Homework set \# 9 is due on Saturday morning, April 19, at 8.30 am .
- Midterm Exam \# 3 will take place on Tuesday April 22 between 8.00 am and 9.30 am . The material to be covered is the material contained in Chapters $10,11,12$, and 14.
- I will distribute the formula sheet that will be attached to the exam later this week via email.
- I will review the material covered on the exam on Sunday evening. Further details will be announced via email.
- Extra office hours will be offered by the TAs on Sunday and Monday. The schedule will be announced via email.
- There will be no class after the exam on Tuesday.

Frank L. H. Wolfs \quad Department of Physics and Astronomy, University of Rochester
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

Physics 121.
April 17, 2008.

- Workshops schedule next week:
- There will be workshops on Monday to answer questions related to
- Exam \# 3

There will be workshops on Thursday and Friday to discuss the
Solutions of Exam \# 3 and return your blue booklets.
During the week of April 28 there will only be workshops on Monday, Tuesday, and Wednesday.

- To increase the efficiency with which we can return the blue booklets of Exam \# 3, you will need to write your workshop day/time on the front of each booklet.
- The results of Exam \# 3 will be emailed to you on Monday April 28

Frank L. H. Wolfs
Department of Physics and Astronomy, University of Rochester

Physics 121.
April 17, 2008.

- Grades: Worst case scenario:

- Let's assume you got 0% on exam 1 and 0% on exams 2 .
- Clearly you would benefit if we drop one of these grades!
- If we drop one of these grades, than the one we count will count for 20% of your final grade.
- If you get 100% on exam \# 3 and 100% on the final (and assuming you have 100% on the homework sets, quizzes, and labs) you end up with a final grade for 80% or an A!!!!!
- No one matches this worst case scenario, but realize that even if you did poorly on the first two exams, you can still get an A in this course.

Frank L. H. Wolfs
Department of Physics and Astronomy, University of Rochester

The equation of state of a gas.
A quick review.
-The equation of state of a gas was initially obtained on the basis of observations.

- Boyle's Law (1627-1691)
$p V=$ constant for gase maintai at constant emperature.

Charle's Law (1746-1823): $V / T=$ constant for gases maintained at constant pressure.

Gay-Lussac's Law (1778-1850): $p / \boldsymbol{T}=$ constant for gase maintained at constant volume
Frank L. H. Wolfs
Department of Physics and Astronomy, University of Rochester

The equation of state of a gas.
A quick review.

- The equation of state of a gas can be written as
$p V=n R T$
where
- $p=$ pressure (in Pa)
- $V=$ volume $\left(\right.$ in $\left.\mathrm{m}^{3}\right)$.
- $n=$ number of moles of gas $\left(1\right.$ mole $=6.02 \times 10^{23}$ molecules or atoms). Note the number of molecules in a mole is also known as Avogadro's number N
$\because R=$ emperature (in K)
- Note: the equation of state is the equation of state of an ideal gas. Gases at very high pressure and/or close to the freezing point show deviations from the ideal gas law.
Frank L. H. Wolfs Department of Physics and Astronomy, University of Rochester

The molecular point of view of a gas.

- Consider a gas contained in a
container.
- The molecules in the gas will
continuously collide with the walls of
the vessel.
- Each time a molecule collides with the
wall, it will carry out an elastic
collision.
- Since the linear momentum of the
molecule is changed, the linear
momentum of the wall will change
too.
- Since force is equal to the change in
linear momentum per unit time, the z
gas will exert a force on the walls.
Frank L. H. Wolfs
\qquad
\qquad
\qquad
\qquad
\qquad
linear momentum per unit time, the
gas will exert a force on the walls.
Department of Physics and Astronomy, University of Rochester
\qquad

The molecular point of view of a gas.

- Consider the collision of a single molecule with the left wall.
- In this collision, the linear momentum of the molecule changes by
$m v_{\mathrm{x}}-\left(-m v_{\mathrm{x}}\right)=2 m v_{\mathrm{x}}$
- The same molecule will collide with this wall again after a time $\Delta t=2 l / v_{x}$
- The force that this single molecule exerts on the left wall is thus equal to

Frank L. H. Wolfs \qquad

The molecular point of view of a gas.

- The force that this single molecule exerts on the left wall is thus equal to

$$
F_{\text {left }}=m v_{\mathrm{x}}^{2} / l
$$

- If the pressure exerted on the left wall by this molecule is equal to $p_{\text {left }}=F_{\text {left }} / A=m v_{\mathrm{x}}{ }^{2} /(l A)$
where A is the area of the left wall.
- The volume of the gas is equal to $l A$ and we can thus rewrite the pressure on the left wall:

$$
p_{\text {left }}=m v_{\mathrm{x}}^{2} / V
$$

Frank L. H. Wolfs Department of Physics and Astronomy, University of Rochester

The molecular point of view of a gas.

- The pressure that many molecules exerts on the left wall is equal to $p_{\text {left }}=m\left(v_{1 \mathrm{x}}{ }^{2}+v_{2 \mathrm{x}}{ }^{2}+v_{3 \mathrm{x}}{ }^{2}+\ldots\right) / V$
- This equation can be rewritten in terms of the average of the square of the x component of the molecular velocity and the number of molecules (N) :
$p_{\text {left }}=m N\left(v_{\mathrm{x}}{ }^{2}\right)_{\text {average }} / V$
- Assuming that there is no preferential direction, the average square of the x,
y, and z components of the molecular
velocity will be the same:
$\left(v_{\mathrm{x}}{ }^{2}\right)_{\text {average }}=\left(v_{\mathrm{y}}{ }^{2}\right)_{\text {average }}=\left(v_{\mathrm{z}}{ }^{2}\right)_{\text {average }}$
Frank L. H. Wolfs
Department of Physics and Astronomy, University of Rochester
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

The molecular point of view of a gas.

- The force on the left wall can be rewritten in terms of the average squared velocity

$$
p_{\text {left }}=m N\left(v^{2}\right)_{\text {average }} / 3 \mathrm{~V}
$$

- Assuming there is no preferential direction of motion of the molecules, the pressure on all walls will be the same and we thus conclude:

$$
p V=m N\left(v^{2}\right)_{\text {average }} / 3
$$

- Compare this to the ideal gas law: $p V=N k T$

\qquad
\qquad
\qquad
\qquad
\qquad
Frank L. H. Wolfs
Department of Physics and Astronomy, University of Rochester

The molecular point of view of a gas.

- Comparing
$p V=m N\left(v^{2}\right)_{\text {average }} / 3$
and the ideal gas law
$p V=N k T$
we find that
$k T=m\left(v^{2}\right)_{\text {average }} / 3=(2 / 3) K_{\text {average }}$
- We thus conclude that:
- The average kinetic energy of the gas molecules is proportional to the temperature of the gas
zero, the average kinetic approache eero, the average kinetic energy

Frank L. H. Wolfs Department of Physics and Astronomy, University of Rochester

	Distribution of molecular speeds. The Maxwell distribution.
Frank L. H. Wolfs	

\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

Distribution of molecular speeds.
The Maxwell distribution.

\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

Molecular speed and the mean-free path.

Molecular speed and the propagation of sound.

- Typical values for $v_{\text {rms }}$:
- For H at $300 \mathrm{~K}, v_{\mathrm{rms}}=1920 \mathrm{~m} / \mathrm{s}$
- For N at $300 \mathrm{~K}, v_{\mathrm{rms}}=517 \mathrm{~m} / \mathrm{s}$
- The speed of sound in these two gases is $1350 \mathrm{~m} / \mathrm{s}$ for H and $350 \mathrm{~m} / \mathrm{s}$ for N .
- Note: The speed of sound in a gas will always be less than $v_{\text {rms }}$ since the sound propagates through the gas by disturbing the motion of the molecules. The disturbance is passed on from molecule to molecule by means of collisions; a sound wave can therefore never travel faster than the average speed of the molecules. Since $v_{\text {rms }}$ increases with T, we expect $v_{\text {sound }}$ to increase with T.
Frank L. H. Wolfs Department of Physics and Astronomy, University of Rochester
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

Molecular speed and evaporation.

- Evaporation: transformation from the liquid to the gas phase.
- A microscopic view of evaporation. - Molecules with high velocity moving close to the surface can overcome the strong attractive forces between the molecules and escap from the liquid (evaporation).
The average velocity of the molecules left behind in the liquid will be lowered.
Since the average velocity is proportional to the temperature, the
temperature of the liquid is lowered when evaporation takes place.

\qquad

Frank L. H. Wolfs
Department of Physics and Astronomy, University of Rochester \qquad

The real equation of state. Different points of view.

\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

| Done for today! Next week: |
| :---: | :---: |
| The first law of thermodynamics. |

