Physics 121, April 15, 2008
Temperature/Heat and the Ideal Gas Law.

Physics 121.
April 15, 2008.

- Course information
- Topics to be discussed today:
- Temperature (review).
- The universal gas law.

Frank L. H. Wolfs Department of Physics and Astronomy, University of Rochester

Physics 121.
April 15, 2008.

- Homework set \# 9 is now available and is due on Saturday morning, April 19, at 8.30 am .
- Midterm Exam \# 3 will take place on Tuesday April 22 between 8.00 am and 9.30 am in Hubbell. The material to be covered is the material contained in Chapters $10,11,12$, and 14 .
- There will be extra office hours on Sunday and Monday. Details will be announced via email.

Homework set \# 9.
All about simple harmonic motion.

\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

Temperature (a quick review).
Measuring temperature.

\qquad
\qquad

Temperature (a quick review).
Measuring temperature.

- The standard thermometer is the
constant volume gas
thermometer.
- The bulb of the thermometer,
which is filled with gas, is put in
thermal contact with the system
to be studied.
- The reservoir on the right is now
adjusted to change the mercury
level so that the gas volume
remains unchanged.
- The temperature of the body is
defined in terms of the pressure p :
$T=C p=C\left(p_{0}+\rho g h\right)$
Frank L. H. Wolfs \quad Department of Physics and Astronomy, University of Rochester

Temperature (a quick review).
Measuring temperature.

$$
\begin{aligned}
& \text { - In general we can thus find the } \\
& \text { temperature of the body by } \\
& \text { comparing the measured pressure } \\
& \text { with the triple-point pressure: } \\
& T=T_{3}\left(p / p_{3}\right)=273.16\left(p / p_{3}\right) \\
& \text { The method described here } \\
& \text { depends slightly on the amount } \\
& \text { and the type of gas in the bulb. } \\
& \text { However, this dependence is } \\
& \text { reduced when we use smaller and } \\
& \text { smaller amounts of gas. }
\end{aligned}
$$

Frank L. H. Wolfs \quad Department of Physics and Astronomy, University of Rochester

Temperature (a quick review). Measuring temperature.	
- The Kelvin is not frequently used in our daily life. - More common temperature scales are the Celsius scale: -0° is defined as the freezing point of water. - 100° is defined as the boiling point of water. and the Fahrenheit scale: - 0° was defined as the temperature of a mixture of water, ice, and ammonium chloride. - 96° was as the temperature of the blood of Fahrenheit's wife. - Note: initially Fahrenheit divided his scale in 12 segments; later he divided each segment in 8 smaller segments.	
Frank L. H. Wolfs ${ }^{\text {depa }}$	Physics and Astronomy, Univers

Thermodynamic variables.
Pressure.

- Pressure is an important thermodynamic variable.
- Pressure is defined as the force per unit area.
The SI unit is pressure is the Pascal: $1 \mathrm{~Pa}=1 \mathrm{~N} / \mathrm{m}^{2}$. Anothe common unit is the atm (atmospheric pressure) which is the pressure exerted by the atmosphere on us (1 atm $=$ $1.013 \times 10^{5} \mathrm{~N} / \mathrm{m}^{2}$).
- A pressure of 1 atm will push a
$P=0$ mercury column up by 76 cm .
Frank L. H. Wolfs Department of Physics and Astronomy, University of Rochester

Thermodynamic variables.
Pressure.

- Many devices that measure pressure, actually measure the pressure difference between the pressure of interest and the atmospheric pressure.
- Atmospheric pressure changes with altitude. The higher you go, the less air is pressing on your head! Airplanes use the atmospheric pressure to measure altitude.
But keep into consideration that the atmospheric pressure at a fixed location and altitude is not constant!

Department of Physics and Astronomy, University of Rochester

Thermodynamic variables.
Pressure.

Thermal expansion.
Linear expansion.

- When the temperature of a material increases, its length will increase:
$\Delta L=\alpha L \Delta T$
- The coefficient α is the coefficient of linear expansion. Typical values are $0.5 \times 10^{-6} \mathrm{~K}^{-1}$ and $10 \times 10^{-6} \mathrm{~K}^{-1}$ at room temperature.
- Note: a solid will expand in every direction!!!!!

Frank L. H. Wolfs Department of Physics and Astronomy, University of Rochester

Thermal expansion. Linear expansion.	
- When the temperature of a material increases, its length will increase: $\Delta L=\alpha L \Delta T$ - The coefficient α is the coefficient of linear expansion. Typical values are $0.5 \times 10^{-6} \mathrm{~K}^{-1}$ and $10 \times 10^{-6} \mathrm{~K}^{-1}$ at room temperature. - Note: a solid will expand in every direction!!!!!	
Frank L. H. Wolfs Depa	Physics and Astronomy, University of Rochester

\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad五
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
Thermal expansion.
Linear expansion.

- In everything we design we need
to consider the effects of thermal
expansion:
- Draw bridges must be able to
open in summer and winter.
- Airplanes expand in flight due to
friction with the air! The width of
the Concorde increases by a few
cm during its flight.
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

Thermal expansion.
Volume expansion.

- When we deal with liquids we
usually talk about volume
expansion:
$\Delta V=\beta V \Delta T$
- The coefficient β is the volume
expansion coefficient.
- The coefficient of volume
expansion β is related to the
coefficient of linear expansion α.
Frank L. H. Wolfs
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

Relation between volume and linear expansion.

- Consider a volume V whose temperature is increased by ΔT :
$\Delta V=(L+\Delta L)(W+\Delta W)(H+\Delta H)-L W H=$
$=W H \Delta L+L H \Delta W+W L \Delta H=$
$=V\left(\frac{\Delta L}{L}+\frac{\Delta H}{H}+\frac{\Delta W}{W}\right)=V(3 \alpha \Delta T)$
\qquad
\qquad
- We see that $\beta=3 \alpha$. \qquad
\qquad

Volume expansion.
The water anomaly.

- Water has a very different thermal behavior from other liquids. It expands when it is cooled below $4^{\circ} \mathrm{C}$.
- Its expansion continues even below the freezing point (frozen pipes).
This is why ice cubes float!
- The anomalous behavior of water effects the way bodies of water freeze:
- The body of water will cool down until it has a uniform temperature of $4^{\circ} \mathrm{C}$.
- Ice will form on top (life continues
below). below)

Department of Physics and Astronomy, University of Rochester

Volume expansion.
 A microscopic view.

- The atoms in a solid are held together in a
three-dimensional periodic lattice by spring-
like interaction forces. The potential energy
for a pair of neighboring atoms depends on
their separation r , and has a minimum at $\mathrm{r}=$
r_{0}. The distance r_{0} is the lattice spacing of a
solid when the temperature approaches
zero. The potential energy curve rises more
steeply when the atoms are pushed together
($\mathrm{r}<\mathrm{r}_{0}$) than when they are pulled apart ($\mathrm{r}>$
r_{0}). The average separation distance at a
temperature above the absolute zero will
therefore be larger than r_{0}. A solid with a
symmetric potential energy curve would
not expand.
Frank L. H . Wolfs
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

The equation of state of a gas.

- Thermal expansion of a gas is more complicated then thermal expansion of solids or liquids. \qquad
- The volume taken up by a gas is usually equal to the volume that is available. \qquad
- The volume expansion theory we just discussed applies only to a gas if its pressure is kept constant. \qquad
- In order to state of a gas, we need to specify its temperature, its volume, and its pressure. The relation between these \qquad variables and the mass of the gas is called the equation of state.
Frank L. H. Wolfs
Department of Physics and Astronomy, University of Rochester

The equation of state of a gas.

- The equation of state of a gas was initially obtained on the basis of observations.
-Boyle's Law (1627-1691)
Boyle's Law (1627-1691):
$P V \quad=\quad$ constant \quad for gase $P V=$ constant for gases temperature.
- Charle's Law (1746-1823)
$V / T=$ constant for gases
maintained at constant pressure.
Gay-Lussac's Law (1778-1850): $P / T=$ constant for gase maintained at constant volume
Frank L. H. Wolfs
Department of Physics and Astronomy, University of Rochester
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

The equation of state of a gas.

- Combining the various gas laws
we can obtain a single more
general relation between
pressure, temperature, and
volume: $p V \propto T$
- Another observation that needs to
be included is the dependence on
the amount of gas: if pressure and
temperature are kept constant, the
volume is proportional to the
mass $m: p V \propto m T$
Frank L. H. Wolfs \quad Department of Physics and Astronomy, University of Rochester T
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

The equation of state of a gas.

- The equation of state of a gas can be written as

$$
p V=n R T
$$

\qquad
where

- $p=$ pressure (in Pa)
- $V=$ volume (in m^{3}).
- $n=$ number of moles of gas $\left(1\right.$ mole $=6.02 \times 10^{23}$ molecules or atoms). Note the number of molecules in a mole is also known as
- Avogadro s number N_{A}
$\operatorname{tant}(R=8.315 \mathrm{~J} /(\mathrm{mol} \mathrm{K})$
- T = temperature (in K)
- Note: the equation of state is the equation of state of an ideal gas. Gases at very high pressure and/or close to the freezing point show deviations from the ideal gas law.
Frank L. H. Wolfs
Department of Physics and Astronomy, University of Rochester

The equation of state of a gas. \qquad
Example problem.

- A cylinder contains oxygen at $20^{\circ} \mathrm{C}$ and a pressure of 15 atm at a volume of 121 . The temperature is raised to $35^{\circ} \mathrm{C}$, and the volume is reduced to 8.5 l . What is the final pressure of the gas?
- Since the amount of gas does not change, we can rewrite the ideal gas law in the following way: $p V / T=$ constant. Since we know the initial state, we can determine the missing information about the final state:

$$
p_{\mathrm{i}} V_{\mathrm{i}} / T_{\mathrm{i}}=p_{\mathrm{f}} V_{\mathrm{f}} / T_{\mathrm{f}}
$$

Frank L. H. Wolfs
Department of Physics and Astronomy, University of Rochester
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

The equation of state of a gas. \qquad
Example problem.

- The final pressure of the gas is equal to

$$
p_{\mathrm{f}}=p_{\mathrm{i}}\left(V_{\mathrm{i}} / V_{\mathrm{f}}\right) /\left(T_{\mathrm{i}} / T_{\mathrm{f}}\right)
$$

- Note:
- This relation will preserve the units of pressure
- The units of volume cancel, and we can keep the volume in units of

The units of volume cancel, and we can keep the volume in units of
correspond to zero volume in all other units. $T_{\mathrm{i}} / T_{\mathrm{f}}=(273.15+20) /(273.15+35)=0.951$ when T is expressed in Kelvin. The ratio would be 0.571 when T is expressed in Celsius. \qquad

- When we use the correct units, we find that $p_{\mathrm{f}}=22 \mathrm{~atm}$.
Frank L. H. Wolfs Department of Physics and Astronomy, University of Rochester
\qquad

Done for today!
On Thursday: The Kinetic Theory of Gases.

Frank L. H. Wolfs	Facing NGC 6946 Credit \& Copyright: Robert Gendler Department of Physics and Astronomy, University of Rochester

