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• Course Information

• Topics to be discussed today:

• Simple Harmonic Motion (Review).

• Simple Harmonic Motion: Example Systems.

• Damped Harmonic Motion

• Driven Harmonic Motion
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• Homework set # 8 is due on Saturday morning, April 12, at
8.30 am.

• Homework set # 9 will be available on Saturday morning at
8.30 am, and will be due on Saturday morning, April 19, at
8.30 am.

• Requests for regarding part of Exam # 1 and # 2 need to be
given to me by April 17.  You need to write down what I
should look at and give me your written request and your
blue exam booklet(s).
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Harmonic motion (a quick review).
Motion that repeats itself at regular intervals.
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Simple Harmonic Motion (a quick review).
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Simple Harmonic Motion (a quick review).

• Other variables frequently used to
describe simple harmonic
motion:

• The period T: the time required to
complete one oscillation. The
period T is equal to 2π/ω.

• The frequency of the oscillation is
the number of oscillations carried
out per second:

ν = 1/T

The unit of frequency is the Hertz
(Hz).  Per definition, 1 Hz = 1 s-1.
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Simple Harmonic Motion (a quick review).
What forces are required?

• Using Newton’s second law we can determine the force
responsible for the harmonic motion:

F = ma = -mω2x

• The total mechanical energy of a system carrying out simple
harmonic motion is constant.

• A good example of a force that produces simple harmonic
motion is the spring force: F = -kx.  The angular frequency
depends on both the spring constant k and the mass m:

ω = √ (k/m)
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Simple Harmonic Motion (SHM).
The torsion pendulum.

• What is the angular frequency of
the SHM of a torsion pendulum:

• When the base is rotated, it twists
the wire and a the wire generated
a torque which is proportional to
the the angular twist:

τ = -Kθ

The torque generates an angular
acceleration α:

α = d2θ/dt2 = τ/I = -(K/I) θ

The resulting motion is harmonic
motion with an angular frequency
ω = √ (K/I).
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Simple Harmonic Motion (SHM).
 The simple pendulum.

• Calculate the angular frequency
of the SHM of a simple
pendulum.

• A simple pendulum is a pendulum
for which all the mass is located at
a single point at the end of a
massless string.

• There are two forces acting on the
mass: the tension T and the
gravitational force mg.

• The tension T cancels the radial
component of the gravitational
force.
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Simple Harmonic Motion (SHM).
 The simple pendulum.

• The net force acting on he mass is
directed perpendicular to the
string and is equal to

F = - mg sinθ

The minus sign indicates that the
force is directed opposite to the
angular displacement.

• When the angle θ is small, we can
approximate sinθ by θ:

F  = - mgθ = - mg x/L

• Note: the force is again
proportional to the displacement.
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Simple Harmonic Motion (SHM).
 The Simple Pendulum.

• The equation of motion for the
pendulum is thus

F = m d2x/dt2 = -(mg/L) x

or

 d2x/dt2 = - (g/L) x

• The equation of motion is the
same as the equation of motion
for a SHM, and the pendulum will
thus carry out SHM with an
angular frequency ω = √ (g/L).

• The period of the pendulum is
thus 2π/ω = 2π √ (L/g).  Note: the
period is independent of the mass
of the pendulum.
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Simple Harmonic Motion (SHM).
The physical pendulum.

• In a realistic pendulum, not all
mass is located at a single point.

• The motion carried out by this
realistic pendulum around its
rotation point O can be
determined by determining the
total torque with respect to this
point:

• If the angle θ is small, we can
approximate the torque by

! = "mgh sin#

! = "mgh#
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Simple Harmonic Motion (SHM).
The physical pendulum.

• The angular acceleration α is
related to the torque:

• The equation of motion for the
angular acceleration α  is given
by

• This again is an equation for
SHM with an angular frequency
ω where

! = I"
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Simple Harmonic Motion (SHM).
The physical pendulum.

• The period of the physical
pendulum is equal to

• We can double check our answer
by requiring that the simple
pendulum is a special case of the
physical pendulum (h = L,
I = mL2):

T =
2!

"
= 2!

I

mgh

T = 2!
I

mgh
= 2!

mL
2

mgL
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Physics 121.
Quiz lecture 21.

• The quiz today will have 3 questions!
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Simple Harmonic Motion (SHM).
The equation of motion.

• All examples of SHM were derived from he following
equation of motion:

• The most general solution to the equation is

d
2
x

dt
2
= !"

2
x

x t( ) = A cos !t +"( ) + B sin !t + #( )



Frank L. H. Wolfs Department of Physics and Astronomy, University of Rochester

Simple Harmonic Motion (SHM).
The equation of motion.

• If A = B

which is SHM.

x t( ) = A cos !t +"( ) + B sin !t + #( ) =

= A sin
1

2
$ %!t %"&

'(
)
*+
+ sin !t + #( )

&
'(

)
*+
=

= 2A sin
1

4
$ +

#
2
%
"
2

&
'(

)
*+
cos

1

4
$ %!t %

#
2
%
"
2

&
'(

)
*+



Frank L. H. Wolfs Department of Physics and Astronomy, University of Rochester

Damped Harmonic Motion.

• Consider what happens when in addition to the restoring
force a damping force (such as the drag force) is acting on
the system:

• The equation of motion is now given by:
 

F = !kx ! b
dx

dt
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Damped Harmonic Motion.

• The general solution of this equation of motion is

• If we substitute this solution in the equation of motion we
find

• In order to satisfy the equation of motion, the angular
frequency must satisfy the following condition:

 
x t( ) = Ae
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Damped Harmonic Motion.

• We can solve this equation and determine the two possible
values of the angular velocity:

• The solution to the equation of motion is thus given by

SHM TermDamping Term
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Damped Harmonic Motion.
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The general solution contains a SHM term, 
with an amplitude that decreases as function of time
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Damped Harmonic Motion has many practical
applications.

Damping is not always a curse.
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Driven Harmonic Motion.

• Consider what happens when we apply a time-dependent
force F(t) to a system that normally would carry out SHM
with an angular frequency ω0.

• Assume the external force F(t) = mF0sin(ωt).  The equation
of motion can now be written as

• The steady state motion of this system will be harmonic
motion with an angular frequency equal to the angular
frequency of the driving force.
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Driven Harmonic Motion.

• Consider the general solution

• The parameters in this solution must be chosen such that the
equation of motion is satisfied.  This requires that

• This equation can be rewritten as
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Driven Harmonic Motion.

• Our general solution must thus satisfy the following
condition:

• Since this equation must be satisfied at all time, we must
require that the coefficients of cos(ωt) and sin(ωt) are 0.
This requires that

and
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Driven Harmonic Motion.

• The interesting solutions are solutions where A ≠  0 and
ω  ≠  ω0.  In this case, our general solution can only satisfy
the equation of motion if

and

• The amplitude of the motion is thus equal to
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Driven Harmonic Motion.

• If the driving force has a
frequency close to the natural
frequency of the system, the
resulting amplitudes can be very
large even for small driving
amplitudes.  The system is said to
be in resonance.

• In realistic systems, there will
also be a damping force.
Whether or not resonance
behavior will be observed will
depend on the strength of the
damping term.
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Driven Harmonic Motion.
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Done for today!
Thursday: Temperature and Heat!

Unusually Strong Cyclone Off the Brazilian Coast: A lot of Rotational Motion!
Credit: Jacques Descloitres,  MODIS Land Rapid Response Team,  GSFC,  NASA 


