
1

Frank L. H. Wolfs Department of Physics and Astronomy, University of Rochester

Physics 121, April 3, 2008.
Equilibrium and Simple Harmonic Motion.
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Physics 121.
April 3, 2008.

• Course Information

• Topics to be discussed today:

• Requirements for Equilibrium (a brief review)

• Stress and Strain

• Introduction to Harmonic Motion
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Physics 121.
April 3, 2008.

• Homework set # 7 is due on Saturday morning, April 5, at
8.30 am.  This assignment has two components:
• WeBWorK (75%)
• Video analysis (25%): you can calculate the angular momentum

quickly by using the expression for the vector product in terms of the
components of the individual vectors (the x and y components of the
position and velocity of the puck).

• Homework set # 8 is now available.  This assignment
contains only WeBWorK questions and will be due on
Saturday morning, April 12, at 8.30 am.

• Exam # 3 will take place on Tuesday April 22.
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Comments on Homework # 7.
Rolling motion causes much confusion!

Two views of rolling motion: 1) Pure rotation around
the instantaneous axis or 2) rotation and translation.
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Comments on Homework # 7.
Rolling motion causes much confusion!

Note: friction provides the
torque with respect to the 
center-of-mass.
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Homework # 8.
Due: Saturday April 12, 2008.

All problems in this 
assignment are related
to equilibrium.  

In all cases you need to
identify all forces and
torques that act on the
system.

Remember to choose the
reference point in a smart
way!
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Physics 121.
Quiz lecture 20.

• The quiz today will have 3 questions!
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Equilibrium (a quick review).

• An object is in equilibrium is the
following conditions are met:

Net force = 0 N (first condition
for equilibrium) .  This implies p
= constant.

and

Net torque = 0 Nm (second
condition for equilibrium).  This
implies L = constant.

• Conditions for static equilibrium:

• p = 0 kg m/s
• L = 0 kg m2/s
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Equilibrium.
Summary of conditions (a quick review).

• Equilibrium in 3D:

• Equilibrium in 2D:
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with respect to any reference point.
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Stress and strain.
The effect of applied forces.

• When we apply a force to an
object that is kept fixed at one
end, its dimensions can change.

• If the force is below a maximum
value, the change in dimension is
proportional to the applied force.
This is called Hooke’s law:

F = k ΔL

• This force region is called the
elastic region.
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Stress and strain.
The effect of applied forces.

• When the applied force increases
beyond the elastic limit, the material
enters the plastic region.

• The elongation of the material
depends not only on the applied force
F, but also on the type of material, its
length, and its cross-sectional area.

• In the plastic region, the material
does not return to its original shape
(length) when the applied force is
removed.
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Stress and strain.
The effect of applied forces.

• The elongation ΔL can be
specified as follows:

where

L0 = original length
A = cross sectional area
E = Young’s modulus

• Stress is defined as the force per
unit area (= F/A).

• Strain is defined as the fractional
change in length (ΔL0/L0).

Note: the ratio of stress to strain 
is equal to the Young’s Modulus.

!L =
1

E

F

A
L
0
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Stress and strain.
Direction matters.
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Stress and strain.  A simple calculation could
have prevented the death of 114 people.
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Stress and strain.  A simple calculation could
have prevented the death of 114 people.

Initial Design

Actual Design
Credit: http://www.glendale-h.schools.nsw.edu.au/faculty_pages/ind_arts_web/bridgeweb/Hyatt_page.htm
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And now something completely different!
Harmonic motion.

• We will continue our discussion of mechanics with the
discussion of harmonic motion (simple and complex).  This
material is covered in Chapter 14 of our text book.

• Chapter 14 will be the last Chapter included in the material
covered on Exam # 3 (which will cover Chapters 10, 11, 12,
and 14).

• Note: We will not discuss the material discussed in Chapter
13 of the book, dealing with fluids, and this material will not
be covered on our exams.
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Harmonic motion.
Motion that repeats itself at regular intervals.
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Simple harmonic motion.

Amplitude

Phase Constant

Angular Frequency

  
x(t) = Acos !t + "( )
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Simple harmonic motion.

• Instead of the angular frequency ω the motion can also be
described in terms of its period T or its frequency ν.

• The period T is the time required to complete one
oscillation:

x(t) = x(t + T)

or

Acos(ωt + φ) = Acos(ωt + ωT + φ)

• In order for this to be true we must require ωΤ = 2π.  The
period T is thus equal to 2π/ω.

• The frequency ν is the number of oscillations carried out per
second (ν = 1/T).  The unit of frequency is the Hertz (Hz).
Per definition, 1 Hz = 1 s-1.
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Simple harmonic motion.

• The frequency of the oscillation
is the number of oscillations
carried out per second:

ν = 1/T

• The unit of frequency is the Hertz
(Hz).  Per definition, 1 Hz = 1 s-1.
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Simple harmonic motion.
What forces are required?

• Consider we observe simple harmonic motion.  The observation
of the motion can be used to determine the nature of the force
that generates this type of motion.  In order to do this, we need
to determine the acceleration of the object carrying out the
harmonic motion:

  

x t( ) = Acos !t +"( )

v t( ) =
dx

dt
=

d

dt
Acos !t +"( )( ) = #! Asin !t +"( )

a t( ) =
dv

dt
=

d

dt
#! Asin !t +"( )( ) = #! 2

Acos !t +"( ) = #! 2
x t( )
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Simple harmonic motion.
What forces are required?

Note: maxima in displacement correlate with minima in
acceleration.
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Simple harmonic motion.
What forces are required?

• Using Newton’s second law we can determine the force
responsible for the harmonic motion:

F = ma = -mω2x

• A good example of a force that produces simple harmonic
motion is the spring force: F = -kx.  The angular frequency
depends on both the spring constant k and the mass m:

ω = √ (k/m)
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Simple harmonic motion.
What forces are required?

• We conclude:

Simple harmonic motion is the motion executed by a particle of
mass m, subject to a force F that is proportional to the displacement
of the particle, but opposite in sign.

• Any force that satisfies this criterion can produce simple
harmonic motion.  If more than one force is present, you
need to examine the net force, and make sure that the net
force is proportional to the displacements, but opposite in
sign.
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Simple harmonic motion.
Total energy.

• During the motion of a block on a
spring, there is a continuous
conversion of energy:

• The potential energy:
  U(t) = (1/2)kxm

2 cos2(ωt+φ)

• The kinetic energy:
  K(t) = (1/2)m(-xmω)2 sin2(ωt+φ)
or
  K(t) = (1/2) kxm

2 sin2(ωt+φ)

• The mechanical energy:
  E(t) = U(t) + K(t) = (1/2)kxm
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Simple harmonic motion.
Total energy.

• Since the mechanical energy is
independent of time, we conclude
that the mechanical energy of the
system is constant!

• If we know the total mechanical
energy of the system, we can
determine the region of oscillation.
This region is constraint by the fact
that the kinetic energy is always
positive, and the potential energy is
thus constraint by the mechanical
energy (U ≤ E).
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Harmonic motion.

• Let’s test our understanding of the basic aspects of harmonic
motion by working on the following concept problems:

• Q20.1

• Q20.2

• Q20.3
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Done for today!
Next week: more harmonic motion!

 Mir Dreams  Credit: STS-76 Crew, NASA 


