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Physics 121, March 27, 2008.
Angular Momentum, Torque, and Precession.
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• Course Information

• Quiz

• Topics to be discussed today:

• Review of Angular Momentum

• Conservation of Angular Momentum

• Precession
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Physics 121.
March 27, 2008.

• Homework set # 7 is now available and is due on Saturday
April 5 at 8.30 am.

• Homework set # 7 has two components:
• WeBWork (75%)
• Video analysis (25%)

• Exam # 2 will be graded this weekend and the results will be
distributed via email on Monday March 29.

• Make sure you pick up the results of exam # 2 in workshop
next week.
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Homework Set # 7.

Rolling Motion.

Precession.

Moment of 
inertia.

Angular 
acceleration. Conservation

Of Angular
Momentum.

Conservation
Of Angular
Momentum.

Pulley problem.
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Video analysis.
Is angular momentum conserved?

Ruler

Origin
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Physics 121.
Quiz lecture 18.

• The quiz today will have 4 questions!
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Angular momentum.
A quick review.

• We have seen many similarities
between the way in which we
describe linear and rotational
motion.

• Our treatment of these types of
motion are similar if we
recognize the following
equivalence:
  linear rotational
  mass m moment I
  force F torque τ = r x F

• What is the equivalent to linear
momentum?   Answer: angular
momentum.
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Angular momentum.
A quick review.

• The angular momentum is
defined as the vector product
between the position vector and
the linear momentum.

• Note:
• Compare this definition with the

definition of the torque.
• Angular momentum is a vector.
• The unit of angular momentum is

kg m2/s.
• The angular momentum depends

on both the magnitude and the
direction of the position and linear
momentum vectors.

• Under certain circumstances the
angular momentum of a system is
conserved!
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Angular momentum.
A quick review.

• Consider an object carrying out
circular motion.

• For this type of motion, the
position vector will be
perpendicular to the momentum
vector.

• The magnitude of the angular
momentum is equal to the
product of the magnitude of the
radius r and the linear momentum
p:

L = mvr = mr2(v/r) = Iω
• Note: compare this with p = mv!
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Conservation of angular momentum.
A quick review.

• Consider the change in the angular momentum of a particle:

• Consider what happens when the net torques is equal to
0 Nm:

dL/dt = 0 Nm  →  L = constant (conservation of angular momentum)
• When we take the sum of all torques, the torques due to the

internal forces cancel and the sum is equal to torque due to
all external forces.

• Note: notice again the similarities between linear and
rotational motion.
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Conservation of angular momentum.
A quick review.

L = r mv sinθ = m (r v dt sinθ)/dt = 2m dA/dt = constant
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Conservation of angular momentum.
A quick review.

• The connection between the angular
momentum L and the torque τ

is only true if L and τ are calculated
with respect to the same reference
point (which is at rest in an inertial
reference frame).

• The relation is also true if L and τ are
calculated with respect to the center
of mass of the object (note: center of
mass can accelerate).
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The angular momentum of rotating rigid
objects.

• Consider a rigid object rotating
around the z axis.

• The magnitude of the angular
momentum of a part of a small
section of the object is equal to

li = ri (mi vi)

• Due to the symmetry of the object
we expect that the angular
momentum of the object will be
directed on the z axis.  Thus we only
need to consider the z component of
this angular momentum.

Note the direction of li !!!!
(perpendicular to ri and pi)
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The angular momentum of rotating rigid
objects.

• The z component of the angular
momentum is

• The total angular momentum of the
rotating object is the sum of the angular
momenta of the individual components:

• The total angular momentum is thus equal
to
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Conservation of angular momentum.
Sample problem.

• The rotational inertia of a collapsing spinning star changes
to one-third of its initial value.  What is the ratio of the new
rotational kinetic energy to the initial rotational kinetic
energy?

• When the star collapses, it is compresses, and its moment of
inertia decreases.  In this particle case, the reduction is a
factor of 3:

• The forces responsible for the collapse are internal forces,
and angular momentum should thus be conserved.

I f =
1

3
Ii
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Conservation of angular momentum.
Sample problem.

• The initial kinetic energy of the star can be expressed in
terms of its initial angular momentum:

• The final kinetic energy of the star ca also be expressed in
terms of its angular momentum:

• Note: the kinetic energy increased!  Where does this energy
come from?
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Conservation of angular momentum.
Sample problem.

• A cockroach with mass m runs
counterclockwise around the rim of a
lazy Susan (a circular dish mounted on
a vertical axle) of radius R and
rotational inertia I with frictionless
bearings.  The cockroach’s speed (with
respect to the earth) is v, whereas the
lazy Susan turns clockwise with
angular speed ω (ω < 0).  The
cockroach finds a bread crumb on the
rim and, of course, stops.  (a) What is
the angular speed of the lazy Susan
after the cockroach stops?  (b) Is
mechanical energy conserved?

ω

v

R

x-axis

y-axis
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Conservation of angular momentum.
Sample problem.

• The initial angular momentum of the
cockroach is

• The initial angular momentum of the
lazy Susan is

• The total initial angular momentum
is thus equal to

ω

v

R

x-axis

y-axis
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Conservation of angular momentum.
Sample problem.

• When the cockroach stops, it will
move in the same way as the rim of
the lazy Susan.  The forces that bring
the cockroach to a halt are internal
forces, and angular momentum is
thus conserved.

• The moment of inertia of the lazy
Susan + cockroach is equal to

• The final angular velocity of the
system is thus equal to

ω

v

R

x-axis

y-axis

I f = I + mR
2

! f =
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2
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Conservation of angular momentum.
Sample problem.

• The initial kinetic energy of the system is equal to

• The final kinetic energy of the system is equal to

• The change in the kinetic energy is thus equal to

Cockroach Lazy Susan

Loss of
Kinetic 
Energy!!
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Precession.

• Consider a rotating rigid object
spinning around its symmetry
axis.

• The object carries a certain
angular momentum L.

• Consider what will happen when
the object is balanced on the tip
of its axis (which makes an angle
θ with the horizontal plane).

• The gravitational force, which is
an external force, will generate a
toques with respect of the tip of
the axis.

mg

!

L
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Precession.

• The external torque is equal to

• The external torque causes a
change in the angular
momentum:

• Thus:
• The change in the angular

momentum points in the same
direction as the direction of the
torque.

• The torque will thus change the
direction of L but not its
magnitude.
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Precession.

• The effect of the torque can be
visualized by looking at the
motion of the projection of the
angular momentum in the xy
plane.

• The angle of rotation of the
projection of the angular
momentum vector when the
angular momentum changes by
dL is equal to

d! =
dL

L cos"
=
Mgr cos"dt

L cos"
=
Mgrdt

L
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Precession.

• Since the projection of the
angular momentum during the
time interval dt rotates by an
angle dφ, we can calculate the
rate of precession:

• We conclude the following:
• The rate of precessions does not

depend on the angle θ.
• The rate of precession decreases

when the angular momentum
increases.
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Torque and Angular Momentum.

• Let’s test our understanding of the basic aspects of torque
and angular momentum by working on the following
concept problems:

• Q18.1

• Q18.2
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Done for today!  Next week we stop moving
and focus on equilibrium.

Spirit Pan from Bonneville Crater's Edge  
Credit: Mars Exploration Rover Mission, JPL, NASA 


