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Physics 121.
March 20, 2008.

• Homework set # 6 is now available on the WEB and will be
due on Saturday morning, March 22, at 8.30 am.

• There will be no homework due on March 29.

• Exam # 2 will take place on Tuesday March 25 at 8 am in
Hubbell.   It will cover the material discussed in Chapters 7,
8, and 9.

• There will be no workshops or office hours on Tuesday -
Friday next week.

• Extra office hours will be scheduled for Sunday 3/23 and
Monday 3/24.
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Physics 121.
Quiz lecture 16.

• The quiz today will have 3 questions!
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Rotational variables.
A quick review.

• The variables that are used to
describe rotational motion are:

• Angular position θ

• Angular velocity ω = dθ/dt

• Angular acceleration α = dω/dt

• The rotational variables are
related to the linear variables:

• Linear position l = Rθ

• Linear velocity v = Rω

• Linear acceleration a = Rα
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Rotational variables.
A quick review.

• Things to consider when looking
at the rotation of rigid objects
around a fixed axis:

• Each part of the rigid object has
the same angular velocity.

• Only those parts that are located
at the same distance from the
rotation axis have the same linear
velocity.

• The linear velocity of parts of the
rigid object increases with
increasing distance from the
rotation axis.
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Rotational variables.
A quick review.

• Note: the acceleration at = rα is
only one of the two component of
the acceleration of point P.  The
two components of the
acceleration of point P are:

• The radial component: this
component is always present since
point P carried out circular motion
around the axis of rotation.

• The tangential component: this
component is present only when
the angular acceleration is not
equal to 0 rad/s2.
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Rotational variables.
A quick review.

Angular velocity and acceleration are vectors!  They have a magnitude and 
a direction.  The direction of ω is found using the right-hand rule.
The angular acceleration is parallel or anti-
parallel to the angular velocity:

If ω increases: parallel
If ω decreases: anti-parallel
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Rotational Kinetic Energy.
 A quick review.

• Since the components of a rotating object have a non-zero
(linear) velocity we can associate a kinetic energy with the
rotational motion:

• The kinetic energy is proportional to square of the rotational
velocity ω.  Note: the equation is similar to the translational
kinetic energy (1/2 mv2) except that instead of being
proportional to the the mass m of the object, the rotational
kinetic energy is proportional to the moment of inertia I of
the object:

Note: units of I: kg m2
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Torque.

• Consider a force F applied to an
object that can only rotate.

• The force F can be decomposed
into two two components:

• A radial component directed
along the direction of the position
vector r.  The magnitude of this
component is Fcosφ.  This
component will not produce any
motion.

• A tangential component,
perpendicular to the direction of
the position vector r. The
magnitude of this component is
Fsinφ.  This component will result
in rotational motion.
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Torque.

• If a mass m is located at the position
on which the force is acting (and we
assume any other masses can be
neglected), it will experience a
linear acceleration equal to Fsinφ/m.

• The corresponding angular
acceleration is equal to Fsinφ/(mr).

• Since in rotational motion the
moment of inertia plays an
important role, we will rewrite the
angular acceleration in terms of the
moment of inertia:

α = rFsinφ / (mr2) = rFsinφ / Ι
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Torque.

• Consider rewriting the previous
equation in the following way:

rFsinφ = Ια
• The left-hand-side of this equation is

called the torque τ of the force F:
τ = Ια

• This equation looks similar to
Newton’s second law for linear
motion:

F = ma
• Note:

  linear rotational
  mass m moment I
  force F torque τ
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Torque.
• In general the torque associated with

a force F is equal to

• The arm of the force (also called the
moment arm) is defined as rsinφ.
The arm of the force is the
perpendicular distance of the axis of
rotation from the line of action of
the force.

• If the arm of the force is 0, the
torque is 0, and there will be no
rotation.

• The maximum torque is achieved
when the angle φ is 90°.

 

!
! = rF sin" =

!
r #
!
F



Frank L. H. Wolfs Department of Physics and Astronomy, University of Rochester

Rotational motion.
Sample problem.

• Consider a uniform disk with
mass M and radius R.  The disk is
mounted on a fixed axle.  A block
with mass m hangs from a light
cord that is wrapped around the
rim of the disk.  Find the
acceleration of the falling block,
the angular acceleration of the
disk, and the tension of the cord.

• Expectations:
• Linear acceleration should

approach g when M approaches 0
kg.

m

M, R
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Rotational motion.
Sample problem.

• Start with considering the forces
and torques involved.

• Define the sign convention to be
used.

• The block will move down and
we choose the positive and we
choose the positive y axis in the
direction of the linear
acceleration.

• The net force on mass m is equal
to

T
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Rotational motion.
Sample problem.

• The net torque on the pulley is
equal to

• The resulting angular
acceleration is equal to

• Assuming the cord is not slipping
we can determine the linear
acceleration:
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Rotational motion.
Sample problem.

• We now have two expressions for
a:

• Solving these equations we find:

T

mg

a

T

R

Note: a = g when M = 0 kg!!!
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Rolling motion.

• Rolling motion is a combination
of translational and rotational
motion.

• The kinetic energy of rolling
motion has thus two
contributions:

• Translational kinetic energy =
(1/2) Mvcm

2.
• Rotational kinetic energy =

(1/2) Icmω 2.

• Assuming the wheel does not
slip: ω = v / R.
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Rolling motion.

• Consider two objects of the same
mass but different moments of
inertia, released from rest from
the top of an inclined plane:

• Both objects have the same initial
mechanical energy (assuming
their CM is located at the same
height).

• At the bottom of the inclined
plane they will have both
rotational and translational kinetic
energy.

• Which object will reach the
bottom first?
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Rolling motion.

• Initial mechanical energy = mgH.

• Final mechanical energy =
(1/2) mvcm

2 + (1/2) Icm ω 2.

• Assuming no slipping, we can
rewrite the final mechanical
energy as (1/2){m+Icm / R2}vcm

2.

• Conservation of energy implies:
(1/2){m+Icm / R2}vcm

2 = mgH
or

(1/2){1+Icm / mR2}vcm
2 = gH

The smaller Icm, the larger vcm
at the bottom of the incline.
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Physics 121 Review
Midterm Exam # 2
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Review Physics 121.
Midterm Exam # 2.

• Main topics covered:

• Work and Energy (chapters 7 - 8):
• Work and Work-Energy Theorem.
• Kinetic and Potential Energy.
• Conservative and Non-Conservative Forces.
• Conservation of Energy.

• Linear Momentum and Collisions (chapter 9):
• Center-of-Mass and Motion of the Center-of-Mass.
• Conservation of Linear Momentum.
• Rocket Equations.
• Elastic and Inelastic Collisions.

• The material covered on the exam is the material covered in
Chapters 7, 8, and 9.
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Chapter 7

Work and Energy
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Chapter 7.
Work: Definition.

• When a force F is applied to an
object, it may produce a
displacement d.

• The work W done by the force F
is defined as

where φ is the angle between the
force F and the displacement d.

 W =
!
Fi

!
d = Fd cos!
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Chapter 7.
Work: Units.

• The unit of work is the Joule
(abbreviated J).

• Per definition, 1 J = 1 Nm = 1 kg
m2/s2.

• There are many important
examples of forces that do not do
any work.  For example, the
gravitational force between the
earth and the moon does not do
any work!  Note: in this case, the
speed of the moon does not
change.
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Chapter 7.
Work done by a varying force.
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Chapter 7.
Power: Definition and units.

• In many cases, the work done by
a tool is less important than the
the rate with which the work can
be done.

• Power of defined as work per unit
time:

• The unit of power is the Watt,
abbreviated by a W (1 W = 1 J/s
= 1 kg m2/s3)

P =
dW

dt
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Chapter 7.
Work-Energy theorem.

• The Work-Energy theorem states:

The net work done on an object is equal to the change in its kinetic
energy.

or W = ΔK.  The kinetic energy of an object is defined as (1/2)Mv2.
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Chapter 8

Conservation of Energy
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Chapter 8.
Conservation of mechanical energy

• Consider what would happen if we define the mechanical
energy of a system to be equal to the sum of the kinetic
energy K and the potential energy U:

E = K + U

• If the total mechanical energy is constant, we must require
that ΔE = 0, or

ΔK + ΔU = 0

• We conclude that any change in the kinetic energy ΔK must
be accompanied by an equal but opposite change in the
potential energy ΔU.
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Chapter 8.
Potential energy in one dimension.

• Per definition, the change in potential energy is related to
the work done by the force:

• The potential energy at x can thus be related to the potential
energy at a point x0:

• Note: the units of potential energy are the units of energy
(the Joule).

!U = "W = " F x '( )dx '
x0

x

#

U x( ) =U x
0( ) + !U =U x

0( ) " F x '( )dx '
x0

x

#



Frank L. H. Wolfs Department of Physics and Astronomy, University of Rochester

Chapter 8.
Potential energy and path dependence.

• The difference between the
potential energy at (2) and at (1)
depends on the work done by the
force F along the path between
(1) and (2).

• But there are many roads that
lead from (1) to (2).  The
potential at (2) is uniquely
defined only if the work done is
path independent.

• This is not true for all forces.  For
example, the work done by the
friction force is always negative,
and the work is path dependent.
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Chapter 8.
Conservative and non-conservative forces.

• If the work is independent of the
path, the work around a closed
path will be equal to 0 J.

• A force for which the work is
independent of the path is called
a conservative force.  Examples:
spring force, gravitational force.

• A force for which the work
depends on the path is called a
non-conservative force.
Examples: friction force, drag
force.
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Chapter 8.
Potential energy in one dimension.

• The potential energy is directly
related to the force acting on the
object.

• If we know the force, we can
calculate the change dU:

• If we know the change dU, we
can calculate the force:

F = 0 N

F > 0 N

F < 0 N

Stable
Equil.
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Chapter 8.
Conservation of energy and dissipative forces.

• When dissipative forces, such as friction forces, are present,
mechanical energy is no longer conserved.

• For example, a friction force will reduce the speed of a
moving object, thereby dissipating its kinetic energy.

• The amount of energy dissipated by these non-conservative
forces can be calculated if we know the magnitude and
direction of these forces along the path followed by the
object we are studying:

ΔK + ΔU = WNC

where WNC is the work done by the non-conservative forces.
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Chapter 9

Linear momentum
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Chapter 9.
The center of mass.

• Up to now we have ignored the
shape of the objects were are
studying.

• we can use whatever we have
learned about motion of point-
like objects if we consider the
motion of the center-of-mass of
the extended object.

• The center-of-mass of an object
is defined as
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Chapter 9.
Motion of the center of mass.

• To examine the motion of the center of mass we start with
its position and then determine its velocity and acceleration:

• The expression for Macm can be rewritten in terms of the
forces on the individual components:

• If the net external force is 0, the center of mass will move
with constant velocity.
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Chapter 9.
Linear momentum.

• The linear momentum of an object is the product of it mass
and its velocity.  For en extended object, the total linear
momentum is equal to

• The change in the linear momentum of the system can now
be calculated:

• This relations shows us that if there are no external forces,
the total linear momentum of the system will be constant
(independent of time).
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Chapter 9.
Systems with variable mass.

• The first Rocket equation:

RU0 = Marocket

where
• R = -dM/dt is the rate of fuel consumption.
• U0 = -u where u is the (positive) velocity of the exhaust

gasses relative to the rocket.
This equation can be used to determine the rate of fuel
consumption required for a specific acceleration.

• The second rocket equation:
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Chapter 9.
Collisions.

• During a collision, a strong force is
exerted on the colliding objects for a
short period of time.

• The collision force is usually much
stronger then any external force.

• The result of the collision force is a
change in the linear momentum of
the colliding objects.

• The change in the momentum of one
of the objects is equal to

• The integral of the force is called the
collision impulse J.
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Chapter 9.
Collisions.

• If we consider both colliding
object, then the collision force
becomes an internal force and the
total linear momentum of the
system must be conserved if there
are no external forces acting on
the system.

• Collisions are usually divided
into two groups:

• Elastic collisions: kinetic energy
is conserved.

• Inelastic collisions: kinetic energy
is NOT conserved.



Frank L. H. Wolfs Department of Physics and Astronomy, University of Rochester

Chapter 9.
Elastic collisions in one dimension.

• The final state of an elastic collision
in one dimension is completely
defined by the initial conditions.

• We can always use a reference frame
where one of the objects is at rest.

• The initial velocity of mass m1 is v1i.
Mass m2 is at rest.

• The final velocity of mass m1 is:

• The final velocity of mass m2 is:

V1i
V2i = 0
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Chapter 9.
Inelastic collisions in one dimension.

• In inelastic collisions, kinetic energy is not
conserved.

• A special type of inelastic collisions are the
completely inelastic collisions, where the
two objects stick together after the collision.

• Conservation of linear momentum in a
completely inelastic collision requires that
m1vi = (m1+m2)vf.

• We can thus determine the final velocity and
kinetic energy of the system:
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Chapter 9.
Collisions in two or three dimensions.

• Collisions in two or three
dimensions are approached in the
same way as collisions in one
dimension.

• The x, y, and z components of the
linear momentum must be
conserved if there are no external
forces acting on the system.

• The collisions can be elastic or
inelastic.

• Even for two-dimensional elastic
collisions, the final state is not
fully defined by the initial state.
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Final remarks.

• The hardest part of each problem is recognizing the
approach to take.  Different approaches may lead to the
same answer, but can differ greatly in difficulty.

• A suggestion:
• Look at the end of chapter problems.  There is only a limited number

of types of question one can ask.
• But ……. Since the questions are grouped by section, you know

already what approach to use based on the section to which the
problems are assigned.

• Some students benefit from copying the questions, cutting them out,
writing the chapter/section numbers on the back, mixing them up, and
then reading through them and determining what approach you would
take if you would see that question on the exam (compare it with the
focus of the section to which the problem was assigned).
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Final remarks.

• You will only need your pen, a pencil, and an eraser.  Being
awake might also help!

• You will find a formula sheet attached to the exam.  This
sheet will be distributed via email before the exam and will
also be available from the Physics 121 website,

• The exam will start at 8 am and end at 9.30 am.  If you show
up late you will just have less time to finish.  Over the years
I have heard every excuse possible for being late, but I have
never heard one that I accepted.

Good luck preparing for the exam.
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Done for today!
More about rotational motion next week.

 N49's Cosmic Blast
Credit:  Hubble Heritage Team (STScI / AURA), Y. Chu (UIUC) et al., NASA


