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• Course Information

• Topics to be discussed today:

• Variables used to describe rotational motion

• The equations of motion for rotational motion
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Course Announcements.

• Homework set # 6 is now available on the WEB and will be
due on Saturday morning, March 22, at 8.30 am.

• All the material to be covered on Exam # 2 has now been
discussed.  Today we will start on material that will be
covered on Exam # 3.

• Exam # 2 will take place on Tuesday March 25 at 8 am in
Hubbell.   It will cover the material discussed in Chapters 7,
8, and 9.
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Physics 121.
Homework Set # 6.

Equations of motion
with constant α.

Rotational kinetic 
energy.  Note: this
is not a rigid body!

Calculating the
moment of inertia

Torque and 
acceleration

Equations of motion
with constant α.
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Rotational motion: variables.

• In our discussion of rotational
motion we will first focus on the
rotation of rigid objects around a
fixed axis.

• The variables that are used to
describe this type of motion are
similar to those we use to
describe linear motion:
• Angular position
• Angular velocity
• Angular acceleration
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Rotational motion: variables.

• The angular position, measured
in radians, is the angle of rotation
of the object with respect to a
reference position.

• The angular position of point P at
this point in time is equal to θ.  In
order to uniquely define this
position, we have assume that an
the angular position is measured
with respect to the x axis.
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Rotational motion: variables.

• Note:

• The angular position is always
specified in radians!!!!

• One radian is the angular
displacement corresponding to a
linear displacement l = R.

• Make sure you keep track of the
sign of the angular position!!!!!

• An increase in the angular
position corresponds to a counter-
clockwise rotation; a decrease
corresponds to a clockwise
rotation.
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Complex motion in Cartesian coordinates is
simple motion in rotational coordinates.
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Rotational motion: variables.

• If we look at an object carrying
out a rotation around a fixed axis,
we will see that the angular
position becomes a function of
time.

• To describe the rotational motion,
we introduce the concepts of
angular velocity and angular
acceleration.

• Remember: for linear motion we
found it useful to introduce the
concepts of linear velocity and
linear acceleration.
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Rotational motion: variables.

• For both velocity and
acceleration we can talk about
instantaneous and average.

• Angular velocity:
• Definition: ω = dθ/dt
• Symbol: ω
• Units: rad/s

• Angular acceleration:
• Definition: α = dω/dt = d2θ/dt2

• Symbol: α
• Units: rad/s2
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Rotational motion: constant acceleration.

• If the object experiences a
constant angular acceleration,
then we can describe its
rotational motion with the
following equations of motion:

• Note how similar these equations
are to the equation of motion for
linear motion!!!!!!
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Rotational motion: constant acceleration.
Example problem.

• A wheel starting from rest, rotates with a constant angular
acceleration of 2.0 rad/s2.  During a certain 3.0 s interval it
turns through 90 rad.  (a) How long had the wheel been
turning before the start of the 3.0 s interval ?  (b). What was
the angular velocity of the wheel at the start of the 3.0 s
interval ?

• Define time t = 0 s as the time that the wheel is at rest.  The
angular velocity and the angle of rotation at  a later time t
are given by
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Rotational motion: constant acceleration.
Example problem.

• The change in the angular position Δθ during a time period
Δt can now be calculated:

• Since the problem specifies Δθ and Δt we can now calculate
the time t and the angular velocity at that time:
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Rotational motion: variables.

• The linear velocity of a part of
the rigid body is related to the
angular velocity of the object.

• Consider point P:
• It this point makes one complete

revolution, it travels a distance
2πR.

• When the angular position
changes by dθ, point P moves a
distance dl = 2πR(dθ/2π) = Rdθ.

• The linear velocity of point P is
equal to v = dl/dt = Rdθ/dt = Rω.
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Rotational motion: variables.

• Things to consider when looking
at the rotation of rigid objects
around a fixed axis:

• Each part of the rigid object has
the same angular velocity.

• Only those parts that are located
at the same distance from the
rotation axis have the same linear
velocity.

• The linear velocity of parts of the
rigid object increases with
increasing distance from the
rotation axis.
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Relation between rotational and linear
variables.

• Although in rotational motion we
prefer to use rotational variables,
we can also express the motion in
terms of linear variables:
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Rotational motion: acceleration.

• Note: the acceleration at = rα is
only one of the two component of
the acceleration of point P.  The
two components of the
acceleration of point P are:

• The radial component: this
component is always present since
point P carried out circular motion
around the axis of rotation.

• The tangential component: this
component is present only when
the angular acceleration is not
equal to 0 rad/s2.
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Rolling motion.

• To describe rolling motion we
need to use both translational and
rotational motion.

• The rolling motion can be
described in terms of pure
rotational motion with respect to
the contact point P which is
always at rest.

• The rotation axis around P is
called the instantaneous axis and
will move when the wheel rolls.
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Direction of the angular velocity.
Use your right hand!

Angular velocity and acceleration are vectors!
They have a magnitude and a direction.
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Direction of the angular acceleration.

The angular acceleration is parallel or anti-parallel to the
angular velocity:

If ω increases: parallel
If ω decreases: anti-parallel
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Pseudo vectors.

Angular velocity and accelerations are not real vectors!
They do no behave as real vectors under reflection: they
are what we call pseudo vectors.
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Let’s test your understanding of the basic
concepts!

• Let’s test our understanding of the basic aspects of
rotational variables by working on the following concept
problems:

• Q15.1

• Q15.2

• Q15.3

• Q15.4

• Q15.5
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Rotational kinetic energy.

• Since the components of a rotating object have a non-zero
(linear) velocity we can associate a kinetic energy with the
rotational motion:

• The kinetic energy is proportional to the square of the
rotational velocity ω.  Note: the equation is similar to the
translational kinetic energy (1/2 mv2) except that instead of
being proportional to the the mass m of the object , the
rotational kinetic energy is proportional to the moment of
inertia I of the object:

Note: units of I: kg m2
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The moment of inertia.
Calculating I.

• The moment of inertia of an
objects depends on the mass
distribution of object and on the
location of the rotation axis.

• For discrete mass distribution it
can be calculated as follows:

• For continuous mass distributions
we need to integrate over the
mass distribution:
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Moment of inertia.
Sample problem.

• Consider a rod of length L and
mass m.  What is the moment of
inertia with respect to an axis
through its center of mass?

• Consider a slice of the rod, with
width dx, located a distance x
from the rotation axis.  The mass
dm of this slice is equal to

axis
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Moment of inertia.
Sample problem.

• The moment of inertia dI of this
slice is equal to

• The moment of inertia of the rod
can be found by adding the
contributions of all of the slices
that make up the rod:
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Moment of inertia.
Parallel-axis theorem.

• Calculating the moment of
inertial with respect to a
symmetry axis of the object is in
general easy.

• It is much harder to calculate the
moment of inertia with respect to
an axis that is not a symmetry
axis.

• However, we can make a hard
problem easier by using the
parallel-axis theorem:
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Moment of inertia.
Sample problem.

• Consider a rod of length L and
mass m.  What is the moment of
inertia with respect to an axis
through its left corner?

• We have determined the moment
of inertia of this rod with respect
to an axis through its center of
mass.  We use the parallel-axis
theorem to determine the moment
of inertia with respect to the
current axis:
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Moment of inertia.  Do not memorize them!
You will get Figure 10.20 on our exams!
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Done for today!
Much more about rotations on Thursday!

Opportunity rover indicates ancient Mars was wet.  
Credit: Mars Exploration Rover Mission, JPL, NASA 


