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Physics 121.
March 18, 2008.

e Course Information

 Topics to be discussed today:
e Variables used to describe rotational motion

* The equations of motion for rotational motion
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Course Announcements.

e Homework set # 6 1s now available on the WEB and will be
due on Saturday morning, March 22, at 8.30 am.

e All the material to be covered on Exam # 2 has now been
discussed. Today we will start on material that will be
covered on Exam # 3.

e Exam # 2 will take place on Tuesday March 25 at 8 am in
Hubbell. It will cover the material discussed in Chapters 7,
8,and 9.
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Physics 121.
Homework Set # 6.

Equations of motion
with constant .

Equations of motion
with constant .

Rotational kinetic
energy. Note: this
is not a rigid body!
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Frank Wolfs
Homework Set 06

Physics 121, Spring 2008
Due date: 03/22/2008 at 08:30am EDT

This assignment will be counted toward your final grade. You can attempt each problem 50 times; once you exceed this number
of attempts, your solutions will not be recorded anymore. You may need to give 4 or 5 significant digits for some (floating point)
numerical answers in order to have them accepted by the computer. Note: to use scientific notion, use a notion like xxE+yy. It is
important that you use a capital E; answers with a lower case e will be evaluated differently

1. (20 pts) library/type19/prob05.pg
A pulsar is a rapidly rotating neutron star that emits radio pulses
with precise synchronization, there being one such pulse for
each rotation of the star. The period 7' of rotation is found by
measuring the time between pulses. At present, the pulsar in the
central region of the Crab nebula has a period of rotation of 7'
=0.03000000 s, and this is observed to be increasing at the rate
of 0.00000146 s/yr. What is the angular velocity of the star?

‘What is the angular acceleration of thepulsar?
If its angular acceleration is constant, in how many years will
the pulsar stop rotating?
The pulsar originated in a super-nova explosion in the year A.D.
1054. What was the period of rotation of the pulsar when it was
born?

2. (20 pts) library/type19/prob02.pg
A wheel, starting from rest, has a constant angular acceleration
of 0.3 rad/s>. In a 1.8-s interval, it turns through an angle of
129 rad. How long has the wheel been in motion at the start of
this 1.8-s interval?

3. (20 pts) library/type20/prob01.pg
In a simple model of the wind speed associated with hurricane
Emily, we assume there is calm eye 16.0 km in radius. The
winds, which extend to a height of 7000 m, begin with a speed
of 259.0 km/hr at the eye wall and decrease linearly with radial
distance down to 0 km/hr at a distance of 101.0 km from the
center. Assume the average density of the air from sea level to
an altitude of 7000 m is 0.825 kg/m?. Calculate the total kinetic
energy of the winds. Note: To appreciate the hurricane’s KE,
compare your answer to the Hiroshima atomic bomb which had
an energy equivalent to about 15,000 tons of TNT, representing
an energy of about 6.00e+13 J.

4. (20 pts) library/type20/prob02.pg
A uniform plate of height H =0.79 m is cut in the form of a par-
abolic section. The lower boundary of the plate is defined by: y
=0.90 x2. The plate has a mass of 3.57 kg. Find the moment of
inertia of the plate about the y-axis.

5. (20 pts) library/type20/prob04.pg
The surface density of a thin rectangle varies as:
o(x,y) = (18kg/m?) + (2kg/m*) (x> +y?)
The rectangle has a length L =0.75 m and a width W = 1.25 m.
‘What is moment of inertia about the z axis?

Calculating the
moment of inertia

Generated by the WeBWorK system ©WeBWorK Team, Department of Mathematics, University of Rochester
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Rotational motion: variables.

e In our discussion of rotational
motion we will first focus on the
rotation of rigid objects around a
fixed axis.

e The variables that are used to

describe this type of motion are
similar to those we use to
describe linear motion:

e Angular position

e Angular velocity

e Angular acceleration
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Rotational motion: variables.

e The angular position, measured
in radians, is the angle of rotation
of the object with respect to a
reference position.

e The angular position of point P at

this point in time is equal to 8. In
order to wuniquely define this
position, we have assume that an

the angular position is measured
with respect to the x axis.
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Rotational motion: variables.

e Note:

 The angular position is always
specified in radians!!!!

* One radian 1is the angular
displacement corresponding to a
linear displacement / = R.

* Make sure you keep track of the

* An increase in the angular
position corresponds to a counter-
clockwise rotation; a decrease
corresponds to a clockwise
rotation.
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Complex motion in Cartesian coordinates 1s
simple motion in rotational coordinates.
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Rotational motion: variables.

e If we look at an object carrying
out a rotation around a fixed axis,
we will see that the angular

position becomes a function of
time.

e To describe the rotational motion,
we introduce the concepts of
angular velocity and angular
acceleration.

e Remember: for linear motion we
found it useful to introduce the
concepts of linear velocity and

. v
Angular acceleration (rad/s”)

linear acceleration.
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Rotational motion: variables.

 For both velocity and
acceleration we can talk about
instantaneous and average.

e Angular velocity:
 Definition: w= dé/dt
* Symbol: @
 Units: rad/s

e Angular acceleration:
e Definition: o = dw/dr = d26/ds?
* Symbol: o
e Units: rad/s?

. ’ 2
Angular acceleration (rad/s”)
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Rotational motion: constant acceleration.

 [f the object experiences a
constant angular acceleration,
then we can describe its
rotational motion with the
following equations of motion:

o(t)=w,+ ot

0(t)=0, +w,t + %O{tz

* Note how similar these equations
are to the equation of motion for
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Rotational motion: constant acceleration.
Example problem.

* A wheel starting from rest, rotates with a constant angular
acceleration of 2.0 rad/s>. During a certain 3.0 s interval it
turns through 90 rad. (a) How long had the wheel been
turning before the start of the 3.0 s interval ? (b). What was
the angular velocity of the wheel at the start of the 3.0 s
interval ?

* Define time ¢ = 0 s as the time that the wheel 1s at rest. The
angular velocity and the angle of rotation at a later time ¢
are given by

w(t)= ot 0(t)=—ot
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Rotational motion: constant acceleration.
Example problem.

* The change in the angular position A@ during a time period
At can now be calculated:

AO(t)=0(t+A1)—0(t)= %(x(t +At) — %(xtz = %(X(At)z + ot At

* Since the problem specifies A@ and At we can now calculate
the time t and the angular velocity at that time:

1 2 1 2
) AG—Ea(At) o AO—E(X(At) A0 1
t = w=qt= =— ——o(Ar)
oAt At At
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Rotational motion: variables.

e The linear velocity of a part of
the rigid body is related to the
angular velocity of the object.

 Consider point P:

* It this point makes one complete
revolution, it travels a distance
27R.

* When the angular position
changes by d@, point P moves a
distance dl = 2mtR(d6/2m) = Rd6.

e The linear velocity of point P is
equal to v = dl/dt = RdO/dt = Rw.
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Rotational motion: variables.

e Things to consider when looking
at the rotation of rigid objects
around a fixed axis:

e Each part of the rigid object has
the same angular velocity.

* Only those parts that are located
at the same distance from the
rotation axis have the same linear
velocity.

e The linear velocity of parts of the
rigid object increases  with
increasing distance from the
rotation axis.
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Relation between rotational and linear
variables.

e Although in rotational motion we
prefer to use rotational variables,
we can also express the motion in
terms of linear variables:

s=r6
vzﬁzi(rﬁ):ral—‘9 re
dt dt dt
dv d dw
at:—:—(lf'a)): — ro
dr dt dt
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Rotational motion: acceleration.

* Note: the acceleration a, = ro 18
only one of the two component of
the acceleration of point P. The
two  components  of  the
acceleration of point P are:

e The radial component: this
component is always present since
point P carried out circular motion
around the axis of rotation.

 The tangential component: this
component is present only when
the angular acceleration is not
equal to O rad/s2.
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Rolling motion.

e To describe rolling motion we
need to use both translational and
rotational motion.

e The rolling motion can be

described in terms of pure
rotational motion with respect to
the contact point P which is
always at rest.

e The rotation axis around P 1is
called the instantaneous axis and
will move when the wheel rolls.
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Direction of the angular velocity.
Use your right hand!

Angular velocity and acceleration are vectors!
They have a magnitude and a direction. W

(b)
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Direction of the angular acceleration.

The angular acceleration is parallel or anti-parallel to the
angular velocity:

If ® increases: parallel

If ® decreases: anti-parallel

(b)
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Pseudo vectors.

Angular velocity and accelerations are not real vectors!
They do no behave as real vectors under reflection: they
are what we call pseudo vectors.
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Let’s test your understanding of the basic
concepts!

eLet’s test our understanding of the basic aspects of
rotational variables by working on the following concept

problems:
« Q15.1
+ Q152 (O‘l i
* 0153 interwrite- :["-
Q PRS - d
« Q154 J .
Scroll Through Questions Multiple Choice True/False  Numeric
° Q15 5 in Self-Paced Mode Questions Questions  Questions
: including
Receive Wisual Notifcation — Students Can See Their Ananers Decimal Point
that Answer was Received or with the 2-line display and PosiNeg

Student has Successfully
Joined Class
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Rotational kinetic energy.

* Since the components of a rotating object have a non-zero

(linear) velocity we can associate a kinetic energy with the
rotational motion:

K= Zlml“’iz = zlmi(w”f N l{zm’rf}wz

T2 T 2 25

* The kinetic energy 1s proportional to the square of the
rotational velocity ®. Note: the equation i1s similar to the
translational kinetic energy (1/2 mv?) except that instead of
being proportional to the the mass m of the object , the

rotational kinetic energy is proportional to the moment of
inertia I of the object:

] = Zmﬂ’iz — K= %[af Note: units of I: kg m?
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The moment of inertia.
Calculating /.

e The moment of inertia of an
objects depends on the mass
|
distribution of object and on the |
|

0.50 m
location of the rotation axis. rfe———4.0m ———]
* For discrete mass distribution it | 5.0 ke 70 ke
can be calculated as follows: A)'ds

2
I:Zmir}
i

e For continuous mass distributions

we need to integrate over the

fe— —

mass distribution:

I = Jrzdm
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Moment of 1nertia.
Sample problem.

e Consider a rod of length L and
mass m. What is the moment of
inertia with respect to an axis
through its center of mass?

e Consider a slice of the rod, with ! *'_'* dx
width dx, located a distance x | -~
from the rotation axis. The mass ~

U AN

L2 L2

dm of this slice is equal to

dm:ﬁdx
L
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Moment of inertia.
Sample problem.

e The moment of inertia dI of this
slice is equal to

dl = x*dm = ﬁxzdx

e The moment of inertia of the rod | *'_'* ax |
can be found by adding the ! e
contributions of all of the slices ~ — — =
that make up the rod: | |
3 3
I = J.L/z dl = J.L/z ﬁxzdxz m l(Ej _l(_Ej i [?
L2 Liz [, L |3\2 3\ 2 12
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Moment of inertia.
Parallel-axis theorem.

e Calculating the moment of
inertial with respect to a
symmetry axis of the object is in

Axis

general easy.
e [t 1is much harder to calculate the

moment of inertia with respect to
an axis that is not a symmetry
axis.

e However, we can make a hard
problem easier by using the
parallel-axis theorem:

I=1_+Mh’
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Moment of inertia.
Sample problem.

e Consider a rod of length L and
mass m. What is the moment of
inertia with respect to an axis
through its left corner?

* We have determined the moment -
of inertia of this rod with respect *iul* - ,
to an axis through its center of [ X g
mass. We use the parallel-axis L g

theorem to determine the moment
of 1inertia with respect to the
current axis:

LY 1 1 1
I=1_+ m(—) =—mL +—mL’ = —mL
2 4 3
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Moment of inertia. Do not memorize them!
You will get Figure 10.20 on our exams!

(a) Thin hoop
of radius R

(b)  Thin hoop
of radius Ry and
width w
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(e) Uniform
Through > sphere of
center MRg radius r,
Axis
Through
central i i (h) Rectangular
diameter 3 MR + 5 Mw? thin plate, of length

I and width w

Through
center 2 g
g Mr 0
Axis
Through L M2+ w2
center = =
~ l
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Done for today!
Much more about rotations on Thursday!

Credit: Mars Exploration Rover Mission, JPL, NASA
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