Geometry/Trigonometry:

$$\cos(30^\circ) = \frac{1}{2}\sqrt{3} \quad \sin(30^\circ) = \frac{1}{2} \quad \tan(30^\circ) = \frac{1}{3}\sqrt{3}$$
$$\cos(45^\circ) = \frac{1}{2}\sqrt{2} \quad \sin(45^\circ) = \frac{1}{2}\sqrt{2} \quad \tan(45^\circ) = 1$$
$$\cos(60^\circ) = \frac{1}{2} \quad \sin(60^\circ) = \frac{1}{2}\sqrt{3} \quad \tan(60^\circ) = \sqrt{3}$$

$$\cos\left(\frac{1}{2}\pi - \theta\right) = \sin(\theta)$$
 $\sin\left(\frac{1}{2}\pi - \theta\right) = \cos(\theta)$

$$cos(2\theta) = 1 - 2sin^2(\theta)$$
 $sin(2\theta) = 2sin(\theta)cos(\theta)$

circle sphere

circumference $2\pi r$

(surface) area πr^2 $4\pi r^2$

volume $\frac{4}{3}\pi r^3$

Integrating and Differentiating:

$$\frac{d(x^n)}{dx} = nx^{n-1}$$

$$\int x^n dx = \frac{x^{n+1}}{n+1}$$

Linear Motion in One Dimension (general):

$$v = \frac{dx}{dt}$$
$$a = \frac{dv}{dt} = \frac{d^2x}{dt^2}$$

Linear Motion in One Dimension (special case):

$$a(t) = a = constant$$

$$v(t) = v_0 + at$$

$$x(t) = x_0 + v_0 t + \frac{1}{2}at^2$$

Linear Motion in Two/Three Dimensions:

$$\vec{v} = \frac{d\vec{r}}{dt}$$

$$\vec{a} = \frac{d\vec{v}}{dt} = \frac{d^2\vec{r}}{dt^2}$$

Circular Motion:

$$a_R = \frac{v^2}{r}$$

$$a_{\rm tan} = \frac{dv}{dt}$$

Force Laws:

$$\sum_{i} \vec{F}_{i} = m\vec{a}$$
 Newton's Second Law of Motion

$$\vec{F}_{12} = -\vec{F}_{21}$$
 Newton's Third Law of Motion

Friction:

$$F_s \le \mu_s N$$
 Static Friction

$$F_s \le \mu_s N$$
 Static Friction
 $F_k = \mu_k N$ Kinetic Friction
 $F_D = -bv$ Dragg Force

$$F_D = -bv$$
 Dragg Force

Newton's Gravitational Law:

$$\vec{F}_{12} = -G \frac{m_1 m_2}{r_{21}^2} \hat{r}_{21}$$

Kepler's Third Law (Law of Periods):

$$\left(\frac{T_1}{T_2}\right)^2 = \left(\frac{r_1}{r_2}\right)^3$$

Work Done by a Force:

$$W = \vec{F} \bullet \vec{d}$$

Constant Force

$$W = \int_{a}^{b} \vec{F} \cdot d\vec{l}$$
 Variable Force

Translation Kinetic Energy:

$$K = \frac{1}{2}mv^2$$

Work-Energy Theorem:

$$W = \Delta K$$

Potential Energy:

$$\Delta U = U_2 - U_1 = -\int_1^2 \vec{F} \cdot d\vec{l} = -W$$
 General Definition of Potential Energy

$$\vec{F} = -\frac{dU}{dx}\hat{x} - \frac{dU}{dy}\hat{y} - \frac{dU}{dz}\hat{z}$$

$$U(h) = mgh$$
 Gravitational Potential Energy (Close to the Surface)

$$U(r) = -G \frac{mM_E}{r}$$
 Gravitational Potential Energy $(r > r_E)$

$$U(x) = \frac{1}{2}kx^2$$
 Spring with Spring Constant k

Conservation of Energy:

$$\Delta U + \Delta K = 0$$
 Conservation of Mechanical Energy $\Delta U + \Delta K = W_{NC}$ Conservation of Energy

$$\Delta U + \Delta K = W_{NC}$$
 Conservation of Energy

Power:

$$P = \frac{dW}{dt}$$

Linear Momentum and Newton's Second Law:

$$\vec{p} = m\vec{v}$$

$$\frac{d\vec{p}}{dt} = \sum \vec{F}$$

Collision Impulse:

$$\vec{J} = \int_{t_1}^{t_2} \vec{F} dt = \vec{p}_f - \vec{p}_i = \Delta \vec{p}$$

Elastic Collisions in One Dimension:

$$v_1' = v_1 \left(\frac{m_1 - m_2}{m_1 + m_2} \right) + v_2 \left(\frac{2m_2}{m_1 + m_2} \right)$$

$$v_2' = v_1 \left(\frac{2m_1}{m_1 + m_2} \right) + v_2 \left(\frac{m_1 - m_2}{m_1 + m_2} \right)$$

Center of Mass:

$$ec{r}_{cm} = rac{\displaystyle\sum_{i} m_{i} ec{r}_{i}}{\displaystyle\sum_{i} m_{i}}$$

$$\vec{r}_{cm} = \frac{1}{M} \int \vec{r} dm$$

Motion of the Center of Mass:

$$M\vec{a}_{cm} = \sum \vec{F}_i$$

Rocket Equations:

$$\begin{split} M \frac{d\vec{v}}{dt} &= \sum \vec{F}_{ext} + \vec{v}_{rel} \frac{dM}{dt} \\ Ma_{rocket} &= RU_0 & \text{First Rocket Equation} \\ v_f &= v_i + u \ln \left(\frac{M_i}{M_f} \right) & \text{Second Rocket Equation} \end{split}$$

Angular Variables:

	Definition	Linear Variable
Angular Position	θ	$l = R\theta$
Angular Velocity	$\omega = \frac{d\theta}{dt}$	$v = R\omega$
Angular Acceleration	$\alpha_{\rm tan} = \frac{d^2\theta}{dt^2}$	$a_{\rm tan} = R\alpha_{\rm tan}$

Equations of Motion for Constant Acceleration:

	Rotationional Motion	Linear Motion
Acceleration	$\alpha(t) = \alpha$	a(t) = a
Velocity	$\omega(t) = \omega_0 + \alpha t$	$v(t) = v_0 + at$
Position	$\theta = \theta_0 + \omega_0 t + \frac{1}{2} \alpha t^2$	$x(t) = x_0 + v_0 t + \frac{1}{2}at^2$

Physics 121, Formula Sheet

Moment of Inertia:

Moment of Inertia:
$$I = \sum_{i} m_{r} r_{i}^{2}$$
 (individual point masses)

$$I = \int_{Voume} r^2 dm$$
 (continuous mass distribution)

Parallel-axis Theorem
$$I = I_{cm} + Mh^2$$

Perpendicular-axis Theorem
$$I_z = I_x + I_y$$

Torque:

Definition:
$$\overline{\tau} = \overline{r} \times \overline{F}$$

Newton's Second Law for Rotational Motion:
$$\bar{\tau} = I\bar{\alpha}$$

Angular Momentum:

Definition:
$$\overline{L} = \overline{r} \times \overline{p}$$

Rotating rigid object:
$$\bar{L} = I\bar{\omega}$$

Relation between torque and angular momentum:
$$\frac{d\overline{L}}{dt} = \sum \overline{\tau}$$

Rotational Energy:

Kinetic energy:
$$K = \frac{1}{2}I\omega^2$$

Work:
$$W = \int \tau d\theta$$

Power:
$$P = \tau \omega$$

Work-Energy Theorem:
$$W = \Delta K = \frac{1}{2}I\omega_f^2 - \frac{1}{2}I\omega_i^2$$

Precession:

$$\Omega = \frac{Mgr_{cm}}{L}$$

Moments of inertia of various objects of uniform composition.					
(a)	Thin hoop of radius R_0	Through center	Axis	MR_0^2	
(b)	Thin hoop of radius R_0 and width w	Through central diameter	R_0 $\frac{1}{2}$	$MR_0^2 + \frac{1}{12} Mw^2$	
(c)	Solid cylinder of radius R_0	Through center	Axis	$\frac{1}{2}MR_0^2$	
(d)	Hollow cylinder of inner radius R_1 and outer radius R_2	Through center	Axis	$\frac{1}{2}M(R_1^2+R_2^2)$	
(e)	Uniform sphere of radius r_0	Through center	Axis	$\frac{2}{5}Mr_0^2$	
(f)	Long uniform rod of length <i>l</i>	Through center	Axis	$\frac{1}{12}Ml^2$	
(g)	Long uniform rod of length <i>l</i>	Through end	Axis	$\frac{1}{3}Ml^2$	
(h)	Rectangular thin plate, of length l and width w	Through center	Axis	$\frac{1}{12}M(l^2+w^2)$	

Conditions for Equilibrium:

$$\sum F_x = 0 \quad \sum \tau_x = 0$$

$$\sum F_{y} = 0 \quad \sum \tau_{y} = 0$$

$$\sum F_z = 0 \quad \sum \tau_z = 0$$

Hooke's Law:

$$F = k\Delta L$$

Stress:

$$stress = force/area = F/A$$

Strain:

strain = change in length / original length =
$$\Delta L/L_0$$

Young's Modulus *E***:**

$$E = \frac{\text{stress/strain}}{\text{strain}}$$

Simple Harmonic Motion:

Definition: $x(t) = A\cos(\omega t + \phi)$

A = Amplitude

 ω = angular frequency

 ϕ = phase

Force Requirement: $F(x) = -m\omega^2 x$

Period: $T = 2\pi / \omega$

Frequency: $f = 1/T = \omega/2\pi$

The Physical Pendulum:

$$T = 2\pi \sqrt{\frac{I}{mgh}}$$

Damped Harmonic Motion (damping force = -bv):

Solution:
$$x(t) = Ae^{-\alpha t} \cos(\omega t)$$

 $A = \text{Amplitude}$
 $\omega = \sqrt{\frac{k}{m} - \frac{b^2}{4m^2}}$
 $\alpha = \frac{b}{2m}$

Forced Harmonic Motion (external force $F_{\text{ext}} = F_0 \cos(\omega t)$ and damping force = -bv):

Solution:
$$x(t) = A_0 \cos(\omega t + \phi_0)$$

$$A_0 = \frac{F_0}{m\sqrt{\left(\omega^2 - {\omega_0}^2\right)^2 + \frac{b^2\omega^2}{m^2}}}$$

$$\phi_0 = \tan^{-1}\left(\frac{{\omega_0}^2 - \omega^2}{\omega\left(\frac{b}{m}\right)}\right)$$

$$\omega_0 = \sqrt{\frac{k}{m}}$$

Thermal Expansion:

$$\Delta L = \alpha L_0 \Delta T$$
 Linear Expansion $\Delta V = \beta V_0 \Delta T$ Volume Expansion $\beta \approx 3 \alpha$

Ideal Gas Law:

$$PV = nRT$$
$$PV = NkT$$

Average Translational Kinetic Energy for an Ideal Gas:

$$\overline{K} = \frac{3}{2}kT$$

The Maxwell Distribution:

$$f(v) = 4\pi N \left(\frac{m}{2\pi kT}\right)^{\frac{3}{2}} v^2 e^{-\frac{1}{2}\frac{mv^2}{kT}}$$

Mean free path in a gas:

$$l_{M} = \frac{1}{4\pi r^{2} \left(N / V \right)}$$

Specific Heat *c*:

$$Q = mc\Delta T$$

Molar Specific Heats for Gases:

$$Q = nC_V \Delta T$$
 Constant Volume

$$Q = nC_P \Delta T$$
 Constant Pressure

$$C_P - C_V = R$$

$$C_V = \frac{3}{2}R$$
 Ideal Monatomic Gas

Latent Heat L:

$$Q = mL$$

First Law of Thermodynamics:

$$\Delta U = Q - W$$

Adiabatic Expansion of a Gas:

$$PV^{\gamma} = \text{constant}$$

Work Done during Volume Changes of an Ideal Gas:

$$W = nRT \ln \frac{V_B}{V_A}$$
 Isothermal Process

$$W = nRT_B \left(1 - \frac{V_A}{V_B} \right)$$
 Isobaric Process

Heat Transfer:

$$\frac{\Delta Q}{\Delta t} = kA \frac{T_1 - T_2}{l}$$

Efficiency of a Heat Engine:

$$e = \frac{|W|}{|Q_H|}$$

Coefficient of Performance of Refrigerators and Air Conditioners:

$$CP = \frac{|Q_L|}{|W|}$$

Coefficient of Performance of Heat Pumps:

$$CP = \frac{|Q_H|}{|W|}$$

Carnot Efficiency:

$$e = 1 - \frac{T_L}{T_H}$$

Entropy:

$$dS = \frac{dQ}{T}$$