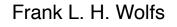
Quantum Mechanics Physics 237

Frank L. H. Wolfs Department of Physics and Astronomy University of Rochester

Frank L. H. Wolfs

Announcements

- Homework # 9 is due on Friday April 8.
- The last PHY 237 homework (# 10) is due on Friday April 15.
- After that only two more exams.

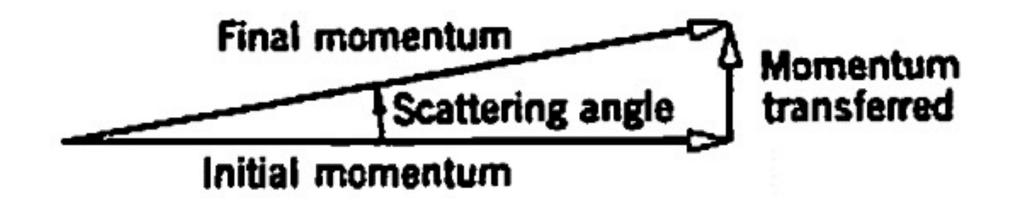

Properties of the deuteron

٥

Energy

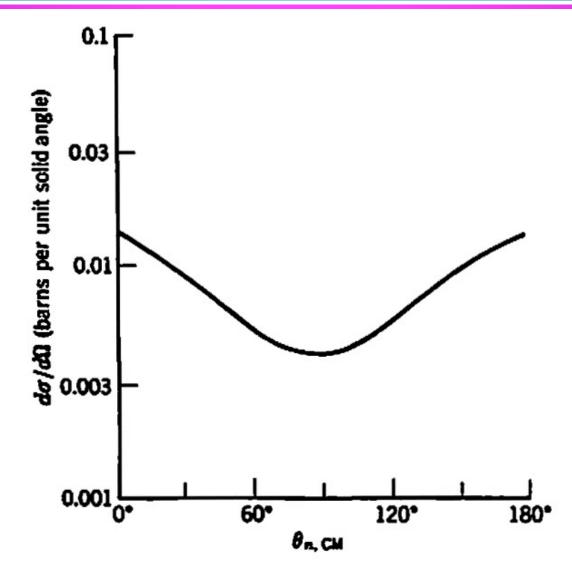
-Va

- Weakly bound (-2.2 MeV and no excited states).
- Even parity (even orbital angular momentum).
- Nuclear spin = 1.
- Mixture of ${}^{3}S_{1}$ and ${}^{3}D_{1}$ state.
- No ¹S₀ state is observed. Tells us something about the spin dependence of the strong force.
- $q = 2.7 \text{ x } 10^{-31} \text{ m2}.$
- $\mu = 0.857 \,\mu_{\rm N}$.
- Charge distribution has a radius of 2.1 fm.


ΔE

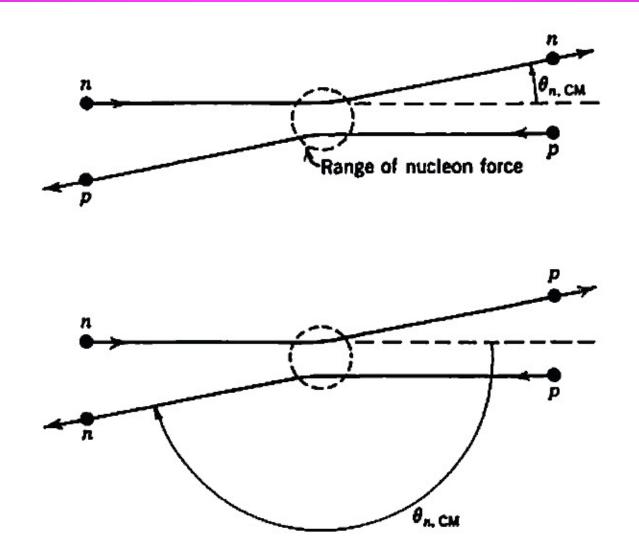
V(r)

Properties of the strong force


- The strongest force in nature.
- The force is attractive.
- The force has a short range (2 fm).
- The strong force is independent of electric charge.
- The strong force is the sane for a neutron neutron pair, a neutron proton pair, and a proton proton pair.

Scattering experiments allow us to problem the nucleon force.

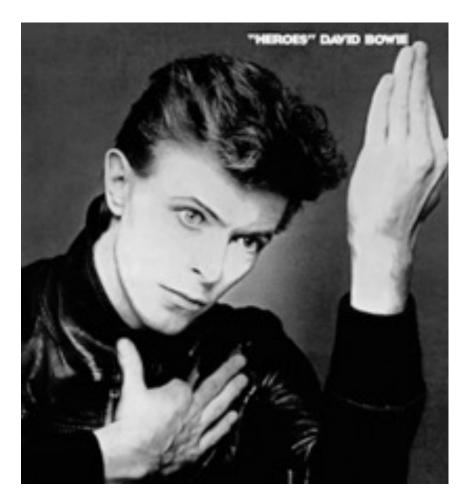
Frank L. H. Wolfs


The measured angular distribution is symmetric around 90 degrees.

Frank L. H. Wolfs

Department of Physics and Astronomy, University of Rochester, Lecture 23, Page 6

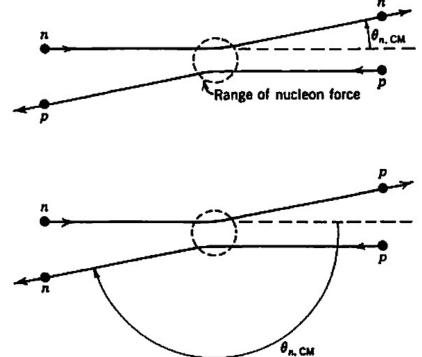
Observed angular distribution explained in terms of the exchange force.



Department of Physics and Astronomy, University of Rochester, Lecture 23, Page 7

3 Minute 58 Second Intermission.

- Since paying attention for 1 hour and 15 minutes is hard when the topic is physics, let's take a 3 minute 58 second intermission.
- You can:
 - Stretch out.
 - Talk to your neighbors.
 - Ask me a quick question.
 - Enjoy the fantastic music.


Frank L. H. Wolfs

The scattering process. Linear and angular momentum.

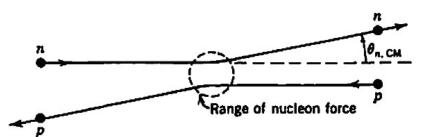
- In the center of mass, both nucleons will have the same linear momentum *p*.
- Consider what happens when the distance of closest approach *r* is the range of the nuclear force.
- The angular momentum *L* is

$$L = \sqrt{\ell(\ell+1)}\hbar \approx p\left(\frac{r}{2}\right) + p\left(\frac{r}{2}\right) = pr$$

• The linear moment and the angular momentum are thus related:

$$p = \frac{\sqrt{\ell(\ell+1)}\hbar}{r}$$

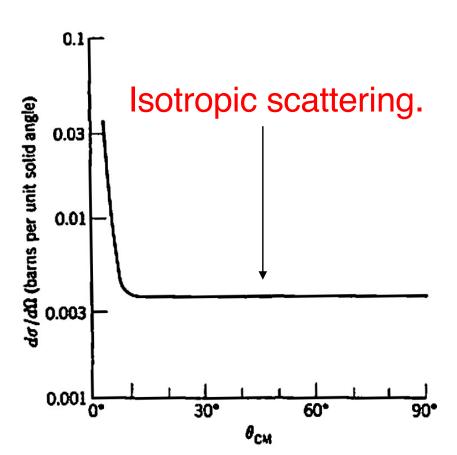
Frank L. H. Wolfs


The scattering process. Linear and angular momentum.

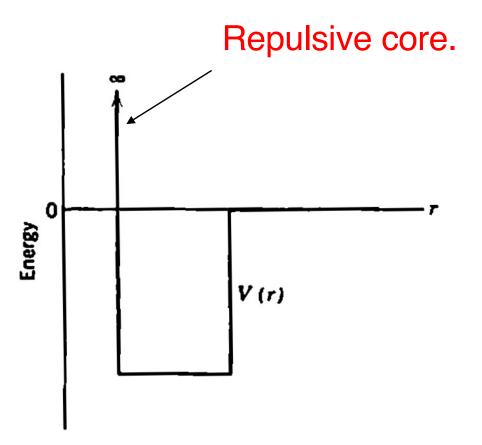
• The kinetic energy of the incident nucleons is directly related to their linear momentum and thus their angular momentum:

$$K_p + K_n = 2 \frac{p_n^2}{2m_n} = \frac{\ell(\ell+1)\hbar^2}{m_n r^2}$$

- For a given total kinetic energy, there is thus a maximum angular momentum for which the nuclear force influences the outcome of the reaction.
- For larger angular momenta, the minimum distance will exceed the range of the nuclear force.


Frank L. H. Wolfs

The scattering process. Measuring angular distributions.

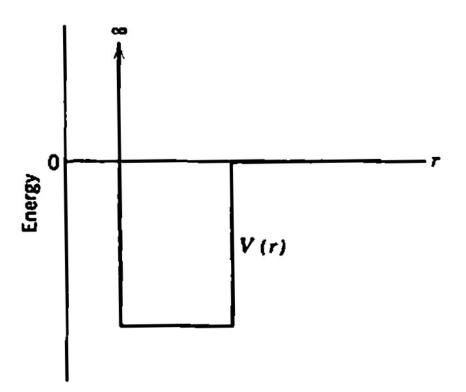

- Typical values for the kinetic energy:
 - l = 1: K = 20 MeV.
 - l = 2: K = 60 MeV.
 - l = 3: K = 120 MeV.
 - l = 4: K = 200 MeV.
- What do we expect?
 - At 40 MeV (20 MeV in CM):
 - l = 0: isotropic scattering.
 - $l = 1: V_{scatter} = 0$ MeV.
 - Scattering process: isotropic.
 - At 330 MeV (165 MeV in CM):
 - l = 0: isotropic scattering.
 - $l = 1: V_{scatter} = 0$ MeV.
 - l = 2: non-isotropic scattering.
 - l = 3: $V_{scatter} = 0$ MeV.
 - Scattering process: non-isotropic.

Frank L. H. Wolfs

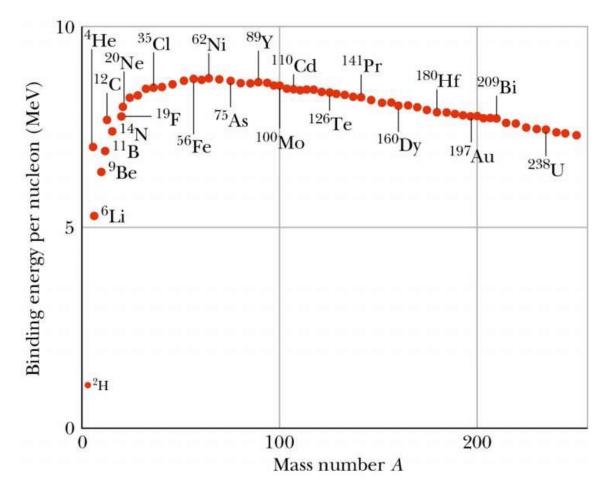
Explaining scattering. The repulsive core.

- The isotropic scattering can only be explained by destructive interference between the l = 0 and l = 2wavefunctions.
- This requires a repulsive core in the nuclear potential.
- This core, at small distance impacts the *l* = 0 wavefunction, but not the *l* = 2 wavefunction. This is a result of differences in the distance of closest approach.

Frank L. H. Wolfs


Explaining scattering. The repulsive core.

- Consequences of the repulsive core:
 - Saturation of the nuclear force.
 - Without the repulsive core:
 - all nucleons enclosed within a radius of 2 fm.
 - Nuclear binding energy would be proportional to *A*.


• With the repulsive core:

- Nucleons only interact with their closest neighbors.
- Average distance between nucleons is 1.2 fm.
- Nuclear radius is proportional to $A^{1/3}$.

Frank L. H. Wolfs

Nuclear binding energy. Certainly not proportional to *A*.

http://www.physics.ohio-state.edu/~kagan/phy367/Lectures/P367_lec_14.html

Frank L. H. Wolfs

What have we learned so far?

- Nucleon potential:
 - Charge independent: strong force between neutrons and protons is the same as the strong force between neutrons and neutrons and between protons and protons.
 - When the two nucleons are in a state with odd *l*, the nucleon potential will be zero.
 - When the two nucleons are in a state with even *l*, the nucleon potential will be non-zero.
 - Pauli exclusion principle prohibits certain configurations (see next week).

ENOUGH FOR TODAY?

Frank L. H. Wolfs