

The Fermi Distribution.

Quantum Statistics. Comparing density distributions.					
	Table 1141 Compa	Boltzmann	Bose	Fermi	
	Basic characteristic	Applies to dis- tinguishable particles	Applies to indis- tinguishable particles not obeying the exclusion principle	Applies to indis- tinguishable particles obeying the exclusion principle	
	Example of system	Distinguishable particles, or approximation to quantum distri- butions at $\mathcal{S} \gg kT$	Bosonsidentical particles of zero or integral spin	Fermionsidentical particles of odd half integral spin	
	Eigenfunctions of particles	No symmetry requirements	Symmetric under exchange of particle labels	Antisymmetric under exchange of particle labels	
	Distribution function	Ae-ent	$\frac{1}{e^{a}e^{\sigma_{B}T}-1}$	$\frac{1}{e^{(d-d_T) kT}+1}$	
	Behavior of distri- bution function versus δ/kT	Exponential	For $\delta \gg kT$, expo- nential For $\delta \ll kT$, lies above Boltzmann	For $\delta \gg kT_i$ expo- nential where $\delta \gg \delta_F$ If $\delta_F \gg kT_i$ decreases abruptly near δ_F	
	Specific problems applied to in this chapter	Gases at essentially any temperature; modes of vibration in an isothermal enclosure	Photon gas (cavity radiation); phonon gas (heat capacity); liquid helium	Electron gas (electronic specific heat, contact poten- tial, thermionic emission)	
Frank L. H. Wolfs	Department of Physics and Astronomy, University of Rochester, Lecture 21, Page 7				

