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Announcements

* Homework # 8 is due on Friday April 1.
e Exam # 2 is/will be returned this week during recitations.

e Reminder:

e Requests to regrade certain parts of Exam # 2 will need to be
submitted via email to Prof. Wolfs in writing (with a copy of the
graded exam) by Thursday April 7.
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Results Exam # 2.
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Some dramatic improvements on Exam # 2.
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Sometimes I give useful hints .....

Exam # 2: knowing the wavefunction in different
regions (V> E and V < E) is important.

But what happens when E = V?

*When E = V, the

Schrodinger  equation
reduces to _

Table 6-2. A Summary of the Systems Studied in Chapter 6 - (d2/dX2) W= 0

Name of Physical Potential and Probability Significant . . 0
System Example Total Energies Density Feature and the solution is
E
Zero Proton in Yy Results used
—E =Cx+D |
potential beam from for other 4 r Vix)-
cyclotron V() * systems
Step Conduction : Vi(x) \ Penetration
potential clectron near E \ ’ i itl/*\}‘ of excluded
(energy surface of x region
below top) metal o o
Step Neutron WY Partial reflec-
E .
potential  trying o e N fonet Exam # 2: one more comment.
(energy escape ; potential
above top) nucleus 0 e discontinuity
Barrier « particle ! Tunncling F.3 Spherical Coordinates
potential trying to E /V\ - Refer to Figures F-3 and F4 "
(energy escape i e * Transitions between states amrnfent ol wmred (@
below top) Coloumb 0 i 2 ) ) 5 ® r=VarA+A 0= & (14
barrier are pOSSI ble VVhen the 4 = drt + R0 + 1% sin? 0dg? (£15)
dv = r*sin 0 drdf dd (F.16)
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expectation value of the
dipole moment is none
ZEero:

9

(Pri) =Py
*This requires you to
evaluate the expectation
value of the vector r, not

the expectation value of
the radial distance r-
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Digital Obsolescence.
It can happen quickly!!!
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n
1 n . Y

Ve = 2V () 4V ()P) et o
P

The scattering cross section is proportional to
YV, ¥i-  The product of the scattering

potential and the initial wavefunction can be /

written as

Ve =3(VO)+V() Py, =
=L+ vy,

The exchange operator changes the proton into a neutron and vice versa. As a consequence, the
effect of the exchange operator for a two-nucleon system with one proton and one neutron

PU =)W, = Vo =2 V() +V()P) =2V () 14(-1))

This potential is also called the Serber potential. We note that when the orbital angular
momentum is odd, the scattering potential is 0; when the orbital angular momentum is even, the
scattering potential is V. The nucleon potential thus depends on the orbital angular momentum
of the interacting nucleons.

We can use a classical picture to connect a certain kinetic energy K to a certain orbital angular
momentum. Consider a state with an orbital angular momentum ¢. If we look at this system in
the center-of-mass reference frame of the two nucleons, we must require that cach nucleon has a

linear momentum p obtained in the following manner:

L=mh:p[é]+p[§]=m = p= ((C+ 1

where 7 is the largest distance at which the strong force acts. The kinetic energy of the two

nucleons is thus be equal to

> 2
S P _L(e+1)h

2m, mr’
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The scattering cross section is proportional to
" - The product of the scattering

potential and the initial wavefunction can be

written as

F——

The exchange operator changes the proton into a neutron and vice versa. As a consequence, the

effect of the exchange operator for a two-nucleon system with one proton and one neutron

This potential is also called the Serber potential. We note that when the orbital angular
momentum is odd, the scattering potential is 0; when the orbital angular momentum is even, the
scattering potential is V. The nucleon potential thus depends on the orbital angular momentum
of the interacting nucleons.

We can use a classical picture to connect a certain kinetic energy K to a certain orbital angular

momentum. Consider a state with an orbital angular momentum If we look at this system in
the center-of-mass reference frame of the two nucleons, we must require that each nucleon has a

linear momentum p obtained in the following manner:

Ee———— ‘

where r is the largest distance at which the strong force acts. The Kinetic energy of the two

nucleons is thus be equal to
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started the conversion to latex. A slow
process but 1t will allow me fix mistakes!
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Figure 71: The exchange operator al work

The exchange operator changes the proton into a neutron and vice versa. As a consequence, the effect of
the exchange operator for a two-nucleon system with one proton and one neutron

1 1
Pii= (1% > Viewter =5 (V) V) P) = 5V () (1

(17.5)

This potential is also called the Serber potential. We note that when the orbital angular momentum is
odd, the scattering potential is 0; when the orbital angular mementum is even, the scattering potential is V.
The nucleon potential thus depends en the orbital angular momentum of the interacting nucleons.

We can use a classical picture to connect a certain kinetic energy K to a certain orbital angular mementum.
Consider a state with an orbital angular momentum €. If we look at thig system in the center-of-mass
reference frame of the two nucleons, we must require that each nucleon has a linear momentum p obtained
in the following manner

o

L= ‘5\1)51}10/‘ p(’f

where r is Uhe largest distance al which Uhe strong foree aets, The kinetic energy of the two nucleons is thus
be equal Lo

w?  L(E+1)?
L 1

i M2

If the orbital angular momentum parameter is cqual to 1, the total kinetic encrgy is 20 MeV. If £ = 2, the
total Kinctic cnergy s 60 MoV, ote. If the kinctic energy is less than 20 MV, the distance = must increase in
order to achieve ¢ = 1 but an increase in 7 creates a separation between the nucleons that is larger than the
range of the strong force and as a result, the £ = lscattering process is not influenced by the strong force.
Consider the following examples:

1. K = 40 MeV. The scattering process will only be influenced by £ — 0 and £ — 1 scattering. But,
for £ — 1 V(r) — 0 and the seattering process ouly involves £ — 0 contributions. The wavefunctions
associated with ¢ — 0 have spherical symmetry and the scattering process is thus isotropic.

S

K = 330 McV. At this encrgy, the maximum orbital angular momentum parameter that can con-
tribute is ¢ = 3. Since for odd values of £ the scattering potential is 0, we only need to consider even
values of ¢. The scallering process is thus determined by the scattering associated with and ¢
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The Boltzmann distribution.
Particle distributions at constant density.
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The Bose distribution.
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d
< >> 2 Minute 56 Second Intermission.

e Since paying attention for 1
hour and 15 minutes 1s hard
when the topic 1s physics,
let’s take a 2 minute 56
second intermission.

* You can:
e Stretch out.
e Talk to your neighbors.
e Ask me a quick question.
e Enjoy the fantastic music.
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The Fermi Distribution.
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Comparing the distributions.
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ENOUGH FOR TODAY?
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