Quantum Mechanics Physics 237

Frank L. H. Wolfs Department of Physics and Astronomy University of Rochester

Frank L. H. Wolfs

Announcements

- Midterm Exam # 2 will take place on Tuesday March 22 between 8 am EST and 9.30 EST.
- The material covered are Chapters 5 8.
- You will receive an equation sheet with the most important equations we discussed in these four Chapters.
- There will be extra office hours on Sunday March 20 and Monday March 21. Monday's recitation will a QA session on the material to be covered on the exam.
- There will be no recitations and office hours on Wednesday March 23 and on Thursday March 24.

Exam # 2: knowing the wavefunction in different regions (V > E and V < E) is important.

Name of System	Physical Example	Potential and Total Energies	Probability Density	Significant Feature
Zero potential	Proton in beam from cyclotron	E 	γ*Ψx	Results used for other systems
Step potential (energy below top)	Conduction electron near surface of metal	$ \underbrace{ \begin{bmatrix} V(x) \\ E \end{bmatrix} }_{0} $	$\int_{0}^{\psi^{*}\psi} x$	Penetration of excluded region
Step potential (energy above top)	Neutron trying to escape nucleus		$\int_{0}^{\frac{\Psi^{*}\Psi}{}} x$	Partial reflec- tion at potential discontinuity
Barrier potential (energy below top)	α particle trying to escape Coloumb barrier	$ \begin{array}{c} $	$\int_{0}^{1} \frac{\psi^{*}\psi}{a} x$	Tunneling

Table 6-2. A Summary of the Systems Studied in Chapter 6

Frank L. H. Wolfs

But what happens when E = V?

Frank L. H. Wolfs

Department of Physics and Astronomy, University of Rochester, Lecture 16, Page 4

 \boldsymbol{E}

E

 $V(\mathbf{x})$

V(x)

Exam # 2: one more comment.

• Transitions between states are possible when the expectation value of the dipole moment is none zero:

$$\left\langle \vec{p}_{fi} \right\rangle = e \left\langle \vec{r} \right\rangle_{fi}$$

• This requires you to evaluate the expectation value of the vector *r*, **not the expectation value of the radial distance** *r*.

F.3 Spherical Coordinates

Refer to Figures F-3 and F-4

$x_1 = r \sin \theta \cos \phi$, $x_2 = r \sin \theta \sin \phi$, $x_3 = r \cos \theta$	(F.13)
$r = \sqrt{x_1^2 + x_2^2 + x_3^2}, \theta = \cos^{-1}\frac{x_3}{r}, \phi = \tan^{-1}\frac{x_2}{x_1}$	(F.14)
$ds^2 = dr^2 + r^2 d\theta^2 + r^2 \sin^2 \theta d\phi^2$	(F.15)
$dv = r^2 \sin \theta dr d\theta d\phi$	(F.16)

Frank L. H. Wolfs

Chapter 9. Multi-electron Atoms.

- We start our study of multi-electron atoms by looking at an atom with two electrons.
 - We assume no mutual interactions between the atoms.
 - We assume that we cannot distinguish the two electrons.
 - The requirement that we cannot distinguish the two electrons requires that the probability density distribution of the wavefunction does not change when we exchange particle 1 and particle 2.

• We conclude:

- If the wavefunction of the two-electron system is asymmetric, the particles cannot have the same quantum numbers.
- If the wavefunction of the two-electron system is symmetric, the particles can have the same quantum numbers.

Frank L. H. Wolfs

3 Minute 12 Second Intermission.

- Since paying attention for 1 hour and 15 minutes is hard when the topic is physics, let's take a 3 minute 12 second intermission.
- You can:
 - Stretch out.
 - Talk to your neighbors.
 - Ask me a quick question.
 - Enjoy the fantastic music.

Frank L. H. Wolfs

Adding spins.

The exchange force.

Energy levels in helium.

Solutions single-electron atom.

Table	7-2	Some E	igenfunctions for the One-Electron Atom	^{0.5}
Quantum Numbers				0.4 [] []
n	1	m	Eigenfunctions	
1	0	0	$\psi_{100} = \frac{1}{\sqrt{\pi}} \left(\frac{Z}{a_0}\right)^{3/2} e^{-Zr/a_0}$	$\begin{array}{c c} n = 1 \\ l = 0 \\ 0.2 \\ \end{array}$
2	0	0	$\psi_{200} = \frac{1}{4\sqrt{2\pi}} \left(\frac{Z}{a_0}\right)^{3/2} \left(2 - \frac{Zr}{a_0}\right) e^{-Zr/2a_0}$	0.1
2	1	0	$\psi_{210} = \frac{1}{4\sqrt{2\pi}} \left(\frac{Z}{a_0}\right)^{3/2} \frac{Zr}{a_0} e^{-Zr/2a_0} \cos\theta$	$0 \begin{bmatrix} i \\ k \end{bmatrix} = \begin{bmatrix} k \\ 5 \end{bmatrix} \begin{bmatrix} i \\ 10 \end{bmatrix}$
2	1	±1	$\psi_{21\pm 1} = \frac{1}{8\sqrt{\pi}} \left(\frac{Z}{a_0}\right)^{3/2} \frac{Zr}{a_0} e^{-Zr/2a_0} \sin \theta \ e^{\pm i\varphi}$	$\begin{array}{c} 0.2 \\ 0.1 \\ \hline \\ 0.1 \\ \hline \\ \end{array} \right) = \begin{array}{c} 0.2 \\ n = 2, \ l = 0 \\ 0.01 \\ \hline \\ 0.01 \\ \hline \\ \end{array} \right)$
3	0	0	$\psi_{300} = \frac{1}{81\sqrt{3\pi}} \left(\frac{Z}{a_0}\right)^{3/2} \left(27 - 18\frac{Zr}{a_0} + 2\frac{Z^2r^2}{a_0^2}\right) e^{-Zr/3a_0}$	
3	1	0	$\psi_{310} = \frac{\sqrt{2}}{81\sqrt{\pi}} \left(\frac{Z}{a_0}\right)^{3/2} \left(6 - \frac{Zr}{a_0}\right) \frac{Zr}{a_0} e^{-Zr/3a_0} \cos\theta$	$\begin{array}{c} \mathbf{C} \\ \mathbf{C} \\ \mathbf{R} \\ \mathbf{N} \\ \mathbf{N} \\ 0.1$
3	1	±1	$\psi_{31\pm 1} = \frac{1}{81\sqrt{\pi}} \left(\frac{Z}{a_0}\right)^{3/2} \left(6 - \frac{Zr}{a_0}\right) \frac{Zr}{a_0} e^{-Zr/3a_0} \sin \theta e^{\pm i\varphi}$	
3	2	0	$\psi_{320} = \frac{1}{81\sqrt{6\pi}} \left(\frac{Z}{a_0}\right)^{3/2} \frac{Z^2 r^2}{a_0^2} e^{-Zr/3a_0} (3\cos^2\theta - 1)$	$0.1 \begin{bmatrix} n = 3, l = 0 \end{bmatrix}$
3	2	±1	$\psi_{32\pm 1} = \frac{1}{81\sqrt{\pi}} \left(\frac{Z}{a_0}\right)^{3/2} \frac{Z^2 r^2}{a_0^2} e^{-Zr/3a_0} \sin\theta\cos\theta e^{\pm i\varphi}$	
3	2	±2	$\psi_{32\pm 2} = \frac{1}{162\sqrt{\pi}} \left(\frac{Z}{a_0}\right)^{3/2} \frac{Z^2 r^2}{a_0^2} e^{-Zr/3a_0} \sin^2 \theta e^{\pm 2i\varphi}$	$0.1 \qquad n = 3, l = 1$
				0 5 10 15 20 25

Frank L. H. Wolfs

ENOUGH FOR TODAY?

Frank L. H. Wolfs