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In this Chapter the one-electron atom will be examined.  The simplest one-electron atom is the 
Hydrogen atom; it has one proton and one electron.  Its potential is well known: the Coulomb 
potential.  The Hydrogen atom is the simplest bound system. 
 
In order to describe the properties of the one-electron atom, we must solve the three-dimensional 
Schrödinger equation.  The solutions of the Schrödinger equation will provide us with the 
following information: 

1. Provide us with a “picture” of the electron orbits.  Note: we can use the wavefunction to 
construct a picture of the distributions of the most likely position of the electrons.  Our 
ability to do his does not violate the uncertainty principle. 

2. The wavefunctions can be used to introduce the concept of angular momentum.  The 
details differ from the Bohr predictions but agree with the results of experiments. 

3. Electron spin. 
4. Transition rate. 

 
The one-electron atom is a two-body system, and to find a solution to the Schrödinger equation 
we need to solve a two-body problem.  However, the two-body problem can be converted to a 
on-body problem by using the reduced mass and the distance between the two bodies in our 
calculations.  The following substitution will be required: 

 

m2 !
Mp

M p + me

me  

 
The potential of the one-electron atom only depends on the magnitude of r and not on its 
direction: 

 

V r( ) = 1
4!"0

Ze2

r
 

 
where Z is the number of protons in the atom.  For 
Hydrogen, Z = 1. 
Since the system has spherical symmetry, due to the fact 
that the potential only depends on the magnitude of r, we 
can use spherical coordinates to study this system.  The 
spherical coordinates are related to the Cartesian 
coordinates: 
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The wavefunction that describes the one-electron atom is a solution of the Schrödinger equation: 

 

 
!
!2

2µ
"2# +V# = i! $#

$t
 

 
The Laplacian operator !2  is defined as 

 

!2 =
"2

"x2
+

"2

"y2
+

"2

"z2
 

 
For the one-electron atom, the potential does not depend on time t.  In this case, we can use 
separation of variables to separate the time-dependent component of the wavefunction from the 
space-dependent part: 

 

 ! x, y, z,t( ) =" x, y, z( )e#iEt /!  
 

The space-dependent part of the wavefunction must satisfy the following equation: 
 

 

!
!2

2µ
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The potential V depends on x, y, and z and we cannot simplify this equation by considering 
further separation of variables: 

 
! x, y, z( ) = X x( )Y y( )Z z( )  

 
However, since the potential depends on the magnitude of r, switching to spherical coordinates 
may allow us to use separation of variables using spherical coordinates. 
The Laplacian operator in terms of spherical coordinates is given by: 

 

!2 =
1
r2

"
"r

r2 "
"r

#
$%

&
'(
+

1
r2 sin)

"
")

sin) "
")

#
$%

&
'(
+

1
r2 sin2)

"2

"* 2  

x = r cos! sin"
y = r sin! sin"
z = r cos"
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Now consider that we can write the wavefunction in the following way: 

 
! r,",#( ) = R r( )$ "( )% #( )  

 
The Schrödinger equation can be rewritten as 
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2µ
1
#
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With this separation of variables we note that 

 
!"
!r

= # $( )% &( ) dR
dr

!"
!$

= R r( )% &( ) d#
d$

!"
!&

= R r( )# $( ) d%
d&

 

 
The Laplacian of this wavefunction can be written as 
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The Schrödinger equation now becomes 
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The left-hand side of the last equation does not depend on the azimuthal angle and must thus add 
up to a constant: 
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1
!

"2!
"# 2 = $m!

2 %
"2!
"# 2 = $m!

2! % ! #( ) = eim!#  

 
Since the solution must be the same when the azimuthal angle changes by 2π, we must require 
that 

 

 

! "( ) = ! " + 2#( ) = eim! "+2#( ) = eim!"ei2#m! = ! "( )ei2#m! $

ei2#m! = cos 2#m!( ) + i sin 2#m!( ) = 1 $ m! = 0,±1,±2,±3,...
 

 
With this solution for the azimuthal component of the wavefunction, the Schrödinger equation 
becomes 

 

 

1
R
1
r2

!
!r

r2 !R
!r

"
#$

%
&'
+
1
(

1
r2 sin)

!
!)

sin) !(
!)

"
#$

%
&'
*

m!
2

r2 sin2)
= *

2µ
"2

E *V r( )( )  

 
This equation can be rewritten in the following way: 
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The left-hand and the right-hand sides must thus be equal to a constant; assume the constant is 

 ! ! +1( ) .  Let us first look at the right-hand side of this equation: 
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The solution of this differential equation can be written in the following way: 

 

 
! "( ) = sin m! " F!, m! cos"( )  

 
where 

 
F!, m! cos!( )  is a polynomial in cosθ. 

The radial component of the wavefunction is a solution of the following differential equation: 
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The solution of this differential equation is  

 

 
R r( ) = e!Zr /na0 Zr

a0

"
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%
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4()0"

2
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where  Gn,! Zr / a0( )  is a polynomial in Zr/a0.  Details on the derivation of this solution can be 
found in appendix N of the textbook. 
The corresponding energy, shown 
schematically in the Figure on the right, is 
quantized and determined by the quantum 
number n: 

 

 
En = !

µZ 2e4

2 4"#0( )2 !2n2
 

 
This energy is the same as the energy 
obtained with the Bohr model. 
The wavefunction of the one-electron atom is 
thus specified by three quantum numbers: n, m, and  ! : 
 
1. Principle quantum number n.  The principle quantum number can be 1, 2, 3, ….  The 

energy of the system depends on n only. 
2. Azimuthal quantum number  ! .  The azimuthal quantum number can be 0, 1, 2, …, n-1.  

The azimuthal quantum number is related to the angular momentum of the system. 
3. Magnetic quantum number m.  The values of the magnetic quantum number depend on the 

value of the azimuthal quantum number: 
 

 m! = !!,!! +1,....,! !1,!  
 

In an external magnetic field, the energy levels of the atom will have an m dependence. 
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Since the energy of the wavefunction is determined by the value of n, a number of wavefunctions 
(with the same principle quantum number but different azimuthal and magnetic quantum 
numbers) will have the same energy.  These wavefunctions are said to be degenerate. 
 
The solution of the Schrödinger equation can thus be written as 

 

 ! n!m r,",#( ) = Rn! r( )$!m "( )%m #( )  
 

This energy En associated with the wavefunction is given by 
 

 
En = !

µZ 2e4

2 4"#0( )2 !2n2
 

 
The wavefunction provides us with information about the radial position of the electron.  To look 
at the radial distribution we examine the following probability density distribution: 

 

 

Pn! r( )dr
Probability to find the electron
between r  and r  +  dr .

"#$ %$ = R! r( )R r( ) 4"r2dr
Volume between a sphere
of radius r  and radius r  +  dr .

"#$ %$  

 
Examples of the radial probability distributions for several different quantum numbers are shown 
in the Figure on Page 7. 
The average radial position can be calculated in the following way: 
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The radial positions consistent with the Bohr model are given by the following expression: 

 

rBohr =
n2a0
Z

 

 
Expressing the average radial position in terms of the Bohr radius we obtain 

 

 
rn! = rBorh 1+

1
2
1!
! ! +1( )
n2

"
#$

%
&'

(
)
*

+
,
-

 

 



Physics 237  Notes Chapter 7 

   
March 14, 2011  Page 7 of 16 

The largest difference occurs for n = 0 for which the Bohr radius is 50% larger than the radius 
obtained from the quantum mechanical model.  For larger values of n the percentage difference 
between these radii decreases. 
 
By looking at the radial probability distributions, shown in the Figure below, we conclude: 

1. The radial probability distributions are concentrated over a restricted range of radial 
positions. 

2. For a fixed principle quantum number n, there are differences in the radial distribution for 
different values of  ! . 

3. When the principle quantum number n increases the average radial position increases. 
4. The average radii are similar to the radii that correspond to the classical Bohr orbits. 
5. Only for  ! = 0  is the probability density significant near r = 0. 
6. The average position is located at distances larger. 

 
The average radial position obtained for n = 1 is taken to be the size of the atom. 
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At small distances, the exponent of –Zr/a0 is approximately equal to 1 and the wavefunctions 
close to r = 0 are proportional to: 

 

 

! = 0 : ! " constant
! = 1 : ! " r

! = 2 : ! " r2
 

 
See Table 7-2 in the textbook.  In general we find that close to r = 0 the wavefunction  ! " r! . 
 
To examine the angular dependence of the probability density distribution we need to examine 
the following function: 

 
! "! = R"R( ) #"#( ) $"$( )  

 
Using the known solution for the azimuthal component of the wavefunction we conclude that 

 
!"! = e#im$eim$ = 1  

 
and the probability density distribution has thus no azimuthal angular dependence. 
To examine the polar angular dependence, we use polar 
diagrams.  To construct polar diagrams, we follow the 
procedure outlined in the Figure on the right: 

1. At a given angle θ calculate  !!m "( ) . 
2. The probability density is proportional to 

 !!m
" #( )!!m #( ) . 

3. Plot a point at an angle θ with respect to the z axis, 
a distance  !!m

" #( )!!m #( )  away from the origin. 
4. Doing this for all values of θ generates the polar diagram.   

Rotating the polar diagram around the z axis can visualize the region in space where the electron 
is most likely to be found.  Examples of polar diagrams for  ! = 3  are shown on the next page.  
We see that when the magnitude of m increase the polar diagram becomes flatter; it is less likely 
that the electron will be found close to the z axis. 
 
In the Bohr model, the angular momentum of the electron was assumed to be quantized.  This 
assumption was required in order to be able to predict the quantized nature of the energy levels 
observed in Hydrogen.  In our study of the one-electron atom we have not made this assumption, 
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but we can show that the 
wavefunction we obtained by solving 
the Schrödinger equation is 
consistent with this assumption.  In 
order to be able to determine the 
angular momentum associated with 
our wavefunction, we must introduce 
the angular momentum operator. 
In classical mechanics, the angular 
momentum of a particle is defined as 

 

 
!
L = !r ! !p  

 
The Cartesian components of the angular momentum are: 

 
Lx = ypz ! zpy

Ly = zpx ! xpz

Lz = xpy ! ypx

 

 
In order to determine the expectation value of the angular momentum and/or its components we 
need to determine the expectation values of the products of positions and linear momentum.  Let 
us first consider the z component of the angular momentum: 

 

 
Lz = xpy ! ypx = !i! x

"
"y

! y
"
"x

#
$%

&
'(

 

 
We note that the position and momentum operator operate on different Cartesian coordinates, 
and the order of operation thus does not matter.   
Since the wavefunction is expressed in terms of spherical coordinates, we also have to express 
the various angular momentum operators in terms of spherical coordinates.  Since we know the 
relation between Cartesian and spherical coordinates, we can differentiate these expressions to 
obtained relations between the changes in the Cartesian coordinates and the changes in the 
spherical coordinates.  For example, consider the relations between the changes in x, y, and z and 
the change in ϕ: 
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Comparing the last expression with the expression for Lz in Cartesian coordinates, we conclude 
that 
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In a similar fashion we can obtain expressions for the x and y components of the angular 
momentum: 
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These relations can also be obtained by using the following relations between the differential 
operators in the Cartesian and spherical coordinate systems: 
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Using the known solution of the Schrödinger equation we immediately see that this solution is an 
eigenfunction of the z component of L operator: 

 

 
Lz ! = "i! #

#$
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The solution of the Schrödinger equation is not an eigenfunction of the x and y components of 
the L operator.  However, the solutions are eigenfunctions of the operator L2: 
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Applying this operator to the solution of the Schrödinger equation we obtain the following: 

 

 

L2 ! = "!2
1
sin#

$
$#

sin# $
$#

%
&
'

(
)
*
+

1
sin2#

$2

$+ 2

,
-.

/
01
R23 =

= "!2 R3( ) 1
sin#

$
$#

sin# $
$#

%
&
'

(
)
*
2 + R2 1

sin2#
$2

$+ 2 3
,
-.

/
01
=

= !2 R3( ) "
1
sin#

$
$#

sin# $
$#

%
&
'

(
)
*
2 +

m2

sin2#
2

,
-.

/
01
= !2 R3( ) " " +1( )2( ) = " " +1( )!2 !

 

 
We thus conclude that 

 

 Lz = ! Lz! = m! ! ! = m!  
 

 
L2 = ! L2! = ! ! +1( )"2 ! ! = ! ! +1( )"2  

 
We thus see that the expectation values of Lz and L2 are quantized.  Any wavefunction that is a 
solution of the Schrödinger equation thus has a well-defined total angular momentum and a well-
defined projection on the z axis. 
We must note that the observation that the expectation value of an operator is quantized does not 
immediately imply that the wavefunction is an eigenfunction of the operator.  In order to show 
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that the wavefunction is an eigenfunction of the operator we must also show that the spread in 
the operator is zero.  This implies that 

 

!A " A2 # A
2
= 0  

 
We can easily verify that this is relation is satisfied for both Lz and L2.  On the other hand, the 
operators Lx and Ly operating on the solution of the Schrödinger equation produce a new 
wavefunction that is not proportional to the original wavefunction.  The wavefunctions are thus 
not eigenfunction of these operators. 
 
In the remainder of these notes, material that is not covered in the book is introduced to describe 
other important properties of operators related to the angular momentum operator. 
The Lx and Ly are commonly combined to create what are called the raising and lowering 
operators: 

 
L± = Lx ± iLy  

 
The product of these two operators is equal to 
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Using the expressions for the Cartesian coordinates of the linear momentum operators we can 
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In the same way we can confirm the following commutation relations: 
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Ly ,Lz!" #$ = i!Lx

Lz ,Lx!" #$ = i!Ly

 

 
When a commutation relation between two operators is not equal to zero, the order of operation 
matters and when we evaluate expectation values associated with these operators we will have to 
symmetrized expressions of these operators.  Consider for example the one-dimensional linear 
momentum operator p and the one-dimensional position operator x.  The commutation relation 
between p and x is equal to 
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This tells us that the order of operation matters.  In order to calculate the expectation values of 
various combinations of p and x we have to use expressions that are symmetric in p and x.  For 
example: 

 

xp !
1
2
xp + px( )

x2 p !
1
4
x2 p + 2xpx + px2( )

 

 
Using the commutation relation we can rewrite the expression of the product of the raising and 
the lowering operator: 

 

 
L+L! = Lx + iLy( ) Lx ! iLy( ) = Lx2 + Ly2 ! i LxLy ! LyLx( ) = Lx2 + Ly2 ! i Lx ,Ly"# $% = L

2 ! Lz
2 + !Lz  

 
In the same way we can calculate the product of the lowering and the raising operator: 

 

 
L!L+ = Lx ! iLy( ) Lx + iLy( ) = Lx2 + Ly2 + i LxLy ! LyLx( ) = Lx2 + Ly2 + i Lx ,Ly"# $% = L

2 ! Lz
2 ! !Lz  

 
The commutation relation between the raising and the lowering operator is thus equal to 

 

 
L+ ,L![ ] = L+L! ! L!L+ = L2 ! Lz
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The commutation relation between the raising and lowering operators and Lz can now also be 
evaluated: 

 

 

L+ ,Lz!" #$ = Lx + iLy ,Lz!" #$ = Lx ,Lz!" #$ + i Ly ,Lz!" #$ = %i!Ly + i i!Lx( ) = %! Lx + iLy( ) = %!L+

L% ,Lz!" #$ = Lx % iLy ,Lz!" #$ = Lx ,Lz!" #$ % i Ly ,Lz!" #$ = %i!Ly % i i!Lx( ) = +! Lx % iLy( ) = +!L%

 

 
Applying these commutation relations to the solution of the Schrödinger equation we make the 
following observation: 

 

 

L+ ,Lz!" #$% n!m = L+Lz & LzL+( )% n!m = m"L+% n!m & LzL+% n!m = &"L+% n!m

L& ,Lz!" #$% n!m = L&Lz & LzL&( )% n!m = m"L&% n!m & LzL&% n!m = +"L&% n!m

 

 
We can rewrite these relations in the following way: 

 

 

Lz L+! n!m( ) = m +1( )" L+! n!m( )

Lz L"! n!m( ) = m "1( )" L"! n!m( )
 

 
We thus see that when we operate the raising operator on a solution of the Schrödinger equation 
with a magnetic quantum number m we create another solution that has a magnetic quantum 
number m+1; m is raised by 1.  When we operate the lowering operator on a solution of the 
Schrödinger equation with a magnetic quantum number m we create another solution that has a 
magnetic quantum number m-1; m is lowered by 1.  In order to fully understand how the raising 
and lowering operators operate on the wavefunctions we need to determine how they change the 
azimuthal quantum number  ! .  In order to address this question we observe that  

 
L2 ,L!" #$ = 0  

 
From this relation we conclude that 

 
L2 ,L±!" #$ = 0

L2 ,Lz!" #$ = 0
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To proof the last commutation relation we observe that: 
 

 

L2 ,Lz!" #$ = Lx
2 + Ly

2 + Lz
2 ,Lz!" #$ = Lx

2 ,Lz!" #$ + Ly
2 ,Lz!" #$

= Lx
2Lz % LzLx

2 + Ly
2Lz % LzLy

2 =

= Lx LxLz % LzLx( ) + LxLz % LzLx( )Lx + Ly LyLz % LzLy( ) + LyLz % LzLy( )Ly =
= Lx Lx ,Lz!" #$ + Lx ,Lz!" #$Lx + Ly Ly ,Lz!" #$ + Ly ,Lz!" #$Ly =

= %i!LxLy % i!LyLx + i!LyLx + i!LxLy = 0

 

 
The relation between L2 and the raising and lowering operators can be demonstrated in the same 
manner. 
Now consider the following relations: 

 

 

L2 ,L+!" #$% n!m = L2L+ & L+L
2( )% n!m = L2 L+% n!m( ) & ! ! +1( )"2 L+% n!m( ) = 0

L2 ,L&!" #$% n!m = L2L& & L&L
2( )% n!m = L2 L&% n!m( ) & ! ! +1( )"2 L&% n!m( ) = 0

 

 
These imply that 

 

 

L2 L+! n!m( ) = ! ! +1( )"2 L+! n!m( )

L2 L"! n!m( ) = ! ! +1( )"2 L"! n!m( )
 

 
We thus conclude that operating the raising or the lowering operator on a solution of the 
Schrödinger equation does not change the azimuthal quantum number. 
 
The raising and lowering operators are important operators since they can be part of an operator 
that is responsible for transitions between atomic states.  The solutions of the Schrödinger 
equation are orthogonal: 

 

 ! n!m ! n ' ! 'm ' = "n.n '"!,! '"m,m '  
 

There is thus no overlap between states with different magnetic quantum numbers and thus no 
spontaneous transitions between states with different quantum numbers.  On the other hand, if an 
operator operates on the system and the operator contains raising and lowering operators, 
transitions between states with different magnetic quantum numbers become possible. 
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