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Models of the atom 
Based on the results of experiments that showed that atoms contain electrons, combined with the 
fact that atoms are neutral, lead to the conclusion that the atom must also contain positive 
charges.  Although the dimensions of the atom were known, it was not clear how the charges 
were distributed.  Thomson developed a model of the atom in which the atom was assumed a 
sphere of positive charge with electrons embedded.  The Thomson model has the following 
features: 

1. In the ground state, the electrons are fixed at their equilibrium positions. 
2. In excited states, the electrons are vibrating around their equilibrium positions. 

But …… vibrating electrons will produce EM waves.  Although this was qualitatively in 
agreement with the observation the atoms in excited states emit radiation, quantitatively the 
predictions of this model did not agree with the observed EM waves. 
 
The experiments by Rutherford, who studied the scattering of α particles from atoms (see 
Figure below), showed convincingly that the Thomson model of the atom was not correct.  
Rutherford observed large deflections of α particles with finite probability.  Consider the 
following facts: 

1. Since me << mα, the deflection due to scattering of electrons is small.  Large deflections 
thus require a large number of small-angle scatterings.  If we rely on multiple scattering 
to produce backward deflection (scattering by angles between 90° and 180°) the fraction 
of α particles that would be observed at angles beyond 90° is 10-3500.  The observed 
fraction is 10-4, much larger than the expect fraction based on multiple scattering. 

2. Large deflections require strong Coulomb repulsion that cannot be provided if the 
positive charge is distributed evenly over the volume of the atom.  If we require that the 
α particles are backscattered due to a single interaction, the positive charge must be 
located in a volume with a diameter of 10-14 m. 

Rutherford developed a theory to describe the observed scattering distributions.  His theory has 
the following features: 
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1. Each incident α particle has a 
well-defined impact parameter 
b. 

2. There is a one-to-one 
correlation between the impact 
parameter and (a) the scattering 
angle θ and (b) the distance of 
closest approach R. 

3. The smallest value of R occurs 
when there is a head-on 
collision (b = 0). 

In the Rutherford experiment, the 
detector used to detect the scattered α 
particles has a well-defined cross sectional area (effective detection area).  Consider for a 
moment that the scattered α particles are distributed uniformly in all directions.  In this case, the 
rate of detection will be the same at all positions of the detector.  However, if we want to plot the 
rate as function of the polar angle θ we need to take into consideration that the number of 
scattered particle scattered by 90° is going to be much larger than the number of particles 
scattered by 0° or 180°.  This is a direct consequence of the phase space available for scattering.  
When the detector is positioned at a certain scattering angle θ the fraction of all particles 
scattered with a scattering angle between θ and θ + dθ depends on the angle.  As a result, if we 
want to look at the scattering rate as function of the polar angle θ, the “trivial” angle dependence 
should be removed if we want to focus on the underlying physics.  As can be seen in the Figure 
at the bottom right of this page, the number of particles scattered with an angle between θ and θ 
+ dθ is proportional to 2π sinθ dθ.  The 
measured scattering rates as function of 
angle are corrected for this “phase-space” 
dependence of the detector response.  The 
remaining angular dependence will reflect 
the underlying physics. 
After applying the solid-angle correction, 
Rutherford obtained the following equation 
for the scattering rate: 
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This expression described the observed angular distributions 
remarkably well, confirming Rutherford’s model of the atom. 
When the energy of the α particles increases, the distance of 
closest approach decreases and at one point the α particles may 
start to feel the influence of the strong nuclear force.  At this 
point, differences from Rutherford scattering are observed and 
the energy and angle at which this occurs can be used to 
determine the size of the nucleus.  This technique is still being 
used to study nuclear size.  For example, in the Figure on the 
right, the results of study of collisions between Ni nuclei and 
Sn nuclei are shown.  The rate of elastic scattering divided by the rate of Rutherford scattering 
shows that at about 60° the influence of the nuclear force becomes important.  Knowing the 
nuclei involved and their energies, we can determine the distance between the centers of the 
nuclei when they “touch” – note: the nuclear force has a short range and requires the nuclear 
surfaces to almost touch before it becomes a factor in the dynamics of the interaction. 
 
Atomic Spectra 
Studies of the emission spectra of atoms have shown that the light they emit is composed of light 
with discrete wavelengths.  The simplest atom to study is the Hydrogen atom, which has one 
proton as its nucleus and one electron.  The Hydrogen spectrum is found to be very simple.  
Measurements of the wavelengths revealed that the light emitted can be grouped in various 
series.  One of these series is the Balmer series.  The wavelengths of the light in this series can 
be described by the following equation: 
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where RH is the Rydberg constant for Hydrogen.  These relations are empirical formulas that 
were derived on the basis of the observed wavelengths.  Similar relations were found for other 
series, such as the Lyman and Paschen series. 
Niels Bohr was the first person to explain the observations that were made.  He developed a 
model, called the Bohr model, which predicted the levels in Hydrogen.  Based on the predicted 
level scheme, predictions can be made about the wavelengths that are present in the emission 
spectrum of Hydrogen.  Bohr showed that the Balmer series was due to transitions to the first 
excited state in Hydrogen.  The Lyman and Paschen series were due to transitions to the ground 
state and the second excited states, respectively.  In 1922, Bohr received the Nobel Prize in 
Physics for his development of the Bohr model. 
Bohr made the following assumptions when he developed his model: 

1. The electrons move in circular orbits. 
2. The angular momentum of the electron is quantized:  L = n  where n = 1, 2, 3, …. 
3. The orbits are stable; no radiation is emitted, even though the electrons accelerate. 
4. Radiation is emitted when transitions occur between different energy levels. 

Note: these assumptions are a mixture of classical and non-classical physics. 
In order for the electrons to move in circular orbits, we must require that 
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The quantization of the angular momentum requires that 

 
 mvr = n  

 
These two equations allow us to determine both v and r for a given value of n.  Based on this 
information, the total energy of the electron can be determined: 

 

 
En =

1
2
mev

2 −
1
4πε0

e Ze( )
r

= −
1
4πε0

⎛
⎝⎜

⎞
⎠⎟

2
mee

2 Ze( )2
22( )

1
n2

n = 1,2,3,.... 

 
Note that the total energy of the electron is negative.  When the energy is positive, the electron is 
unbound. 
The predictions made with this model agree very well with experimental values.  The model 
predicted lines that had not been observed at that time; these lines were confirmed to later. 
 
Precise measurements showed that corrections must be made for the nuclear mass.  Instead of 
using the mass of electron, me, the reduced mass µ should be used: 

 

µ =
meMnuc

me + Mnuc

 

 
As a result of this change, the Rydberg constant for Hydrogen changes by 1 part in 2000.  After 
making this correction, it was observed that the predicted wavelengths of the emission lines 
agree to within 3 parts of 100,000 with the observed wavelengths. 
 
 The quantization of the energy states of atoms was confirmed directly with a simple experiment 
performed by Frank and Hertz in 1914.  In 1925 they received the Nobel Prize in Physics for 
their work. 
The Frank and Hertz experiment is 
schematically shown in the Figure at the 
bottom of the page.  Key aspects of the 
experiment are: 

1. The electrons are accelerated by a 
potential difference V between the 
cathode (C) and the anode (A). 
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2. The maximum kinetic energy of the 
electrons upon reaching A is eV. 

3. A retarding potential exist between 
A and P.  Electrons that pass A must 
have a minimum kinetic energy (eVr) 
to reach P. 

4. The current collected at P is 
measured as function of the 
accelerating potential V.  The current is directly proportional to total charge collected at 
P, and thus to the number of electrons reaching P. 

5. The measured current show significant dips at 4.9 V, 9.8 V, etc. 
6. When the potential is 4.9 V, the electrons have an energy of 4.9 eV upon reaching the 

anode A.  The dip indicates that a significant number of electrons are removed from the 
current; they must have lost most of their energy so that they now have an energy that is 
too low to reach P.  The first excited state in Hg must be located around 4.9 eV. 

7. The dip at 9.8 V corresponds to the loss of electrons that have two interactions, loosing 
4.9 eV at each interaction. 

8. As the maximum energy of the electrons increases, excitation of higher-lying states 
becomes possible.  Once the atoms are excited, they will decay back to their ground state 
via the emission of photons.  These photons can be detected.  The two spectra shown 
below show the emission spectrum obtained from an experiment with Mg vapor at two 
different acceleration voltages.  At 3.2 V, only one state in Mg can be excited; at 6.5 V 
two states can be excited (remember: a shorter wavelength corresponds to a larger 
energy). 

 
Quantization postulates 
The assumption made by Bohr that the angular momentum of the electron is quantized is a 
special case of the Wilson-Sommerfeld quantization rules.  The quantization rules apply to 
any system with a coordinate q that is a periodic function.  Note: a periodic function requires that 
the time dependence of a coordinate q repeats itself after well-defined periods of time (the 
period) but the time dependence of q does not have to be harmonic.  For this type of motion, the 
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Wilson-Sommerfeld quantization rule states that the linear momentum pq associated with 
coordinate q must satisfy the following condition: 

 

 
pq dq

One period
∫ = nqh  

 
where nq is the quantum number (an integer). 
 
Example 1 
Consider one-dimensional, non-relativistic, simple-harmonic motion.  The total energy 
associated with this motion is equal to 
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This equation can be rewritten in the following way: 
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and describes an ellipse in px versus x space.  The state of the system at t = 0 is represented by a 
point on this ellipse.  As time evolves, this 
point follows the path described by the ellipse 
and after one period will return to its starting 
point.  In order to apply the Wilson-
Sommerfeld quantization rule we need to 
evaluate the integral of px during one period.  
This is equal to the area of the ellipse: 
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Since the motion is simple-harmonic motion, 
√(k/m) is equal to ω or 2πν where ν is the 
frequency of the oscillation.  The quantization 
rule can now be rewritten as 
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2πE
2πν
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E
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or 

 
E = nhν  

 
which is Planck’s quantization rule. 
 
Example 2 
Consider an object carrying out rotational motion with a constant angular momentum L.  In this 
example, the position coordinate is the angle θ and the associated momentum is L.  Applying the 
Wilson-Sommerfeld quantization rule results in the following relation: 

 

 
Ldθ

One period
∫ = L dθ

One period
∫ = 2πL = nh ⇒ L = n h

2π
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which is Bohr’s quantization rule. 
 
The Wilson-Sommerfeld quantization rule can also explain the hyperfine splitting in the 
Hydrogen spectrum.  Consider an electron in an elliptical orbit around a proton.  The orbit can be 
described in terms of two position coordinates: the radius r and the polar angle θ.  The two 
momenta associated with these position coordinates are the linear momentum pr and the angular 
momentum L.  The Wilson-Sommerfeld quantization rule requires that 

 

 

Ldθ∫ = nθh

pr dr∫ = nrh

 

 
Since angular momentum is conserved, assuming we consider the electrons and the proton as our 
system, we can rewrite the first quantization requirement as 

 

 
Ldθ∫ = L dθ∫ = 2πL = nθh ⇒ L =

nθh
2π

= nθ where nθ = 1,2,3,4,5,.....  

 
Note that this quantization condition is the same as the condition we obtained for a circular orbit.  
For a circular orbit, the radial component of the linear momentum, pr, is equal to 0 and the 
quantum number nr must thus be 0.  Values of nr different from 0 correspond to elliptical orbits 
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with a semi-major axis equal to a and a semi-minor axis equal to b.  For such an orbit we can 
evaluate the integral of pr and find that it is equal to 
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The eccentricity ε of the elliptical orbit is 
defined as 

 

ε = 1− b
a

⎛
⎝⎜

⎞
⎠⎟
2

 

 
A circular orbit has an eccentricity of 0.  The 
product of the eccentricity ε and the distance a 
is the distance between the center of the ellipse 
and one of the focal points where the proton is located. 
At the positions where r = a (1 ± ε) the radial component of the linear momentum of the electron 
will be zero.  At these positions, the total energy of the electron will be the sum of the potential 
energy and rotational kinetic energy (which can be expressed in terms of the angular momentum 
of the electron): 
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The angular momentum L can be expressed in either quantum number nr or nθ: 
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The two quantum numbers are thus connected to each other: 
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This equation can be rewritten as a relation between b and a: 

 

nθ a − b( ) = nrb ⇒ anθ = b nr + nθ( ) = bn ⇒ b = a nθ
n
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The integer n is called the principal quantum number; the integer nθ is called the azimuthal 
quantum number.  The semi-major axis a can be calculated by applying the condition for 
mechanical stability of elliptical orbits (see Physics 235): 
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Although we do not have to the time to derive this relation, we can quickly check that it is 
consistent with a circular orbit for which stability requires that 
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The total energy of the system is found to be equal to 
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Typical orbits of the electron for three values of n are 
shown in the Figure.  According to the equation for E, 
electrons in the two orbits for n = 2 have the same 
energy.  These orbits are said to be degenerate.  
Experiments show that different orbits for the same 
value of n have slightly different energies.  To explain 
these energy differences we must treat the orbits using 
relativistic mechanics; this leads to the following 
expression for the energy: 
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In this equation, α is the fine structure constant which is approximately equal to 1/137.  As we 
can see, orbits with the same n but different nθ have different energies and the degeneracy has 
been removed. 
The splitting is small.  Consider for example the n = 2 orbit.  The difference between the two 
possible orbits is equal to 
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A few of the energy levels 
calculated using the relativistic 
expression for E are shown in the 
energy level diagram shown on the 
right.  The measured wavelengths 
for the Hydrogen atom are in 
excellent agreement with 
predictions made using the 
relativistic expression for E. 
The dashed arrows in the Figure show transitions that are in principle possible but are not 
observed.  Based on the quantum numbers of the states involved in transitions, we conclude that 
transitions only occur when 

 
nθ i − nθ f = ±1  

 
This is an example of a selection rule that limits the number of possible transitions.  We will 
encounter more of these later in this course. 
 
Final remarks 
All results we have discussed to date have shaped the development of modern quantum 
mechanics.  The theory of quantum mechanics must satisfy the following requirements: 
 

1. When the quantum numbers used to describe quantum mechanical states become very 
large, the predictions made on the basis of the quantum theory must approach the 
predictions of classical physics. 

 
2. The selections rules have to be satisfied over the entire range of quantum numbers.  

Selection rules obtained in the classical limit must also hold in the quantum limits and 
vice versa. 

 


