The momentum principle:

$$
\begin{aligned}
& d \overrightarrow{\mathbf{p}}=\overrightarrow{\mathbf{F}}_{n e t} d t \\
& \overrightarrow{\mathbf{p}}=\frac{m \overrightarrow{\mathbf{v}}}{\sqrt{1-\frac{v^{2}}{c^{2}}}} \\
& \overrightarrow{\mathbf{p}}_{\text {new }}=\overrightarrow{\mathbf{p}}_{\text {old }}+\overrightarrow{\mathbf{F}}_{\text {net }} \Delta t \\
& \overrightarrow{\mathbf{r}}_{\text {new }}=\overrightarrow{\mathbf{r}}_{\text {old }}+\frac{1}{\sqrt{1+\left(\frac{p}{m c}\right)^{2}}}\left(\frac{\overrightarrow{\mathbf{p}}}{m}\right) \Delta t
\end{aligned}
$$

Equations of motion in 1D for constant acceleration and low velocities ($v \ll c$):

$$
\begin{aligned}
& x(t)=x_{0}+v_{0} t+\frac{1}{2} a t^{2} \\
& v(t)=\frac{d x(t)}{d t}=v_{0}+a t \\
& a(t)=\frac{d v(t)}{d t}=a=\text { constant }
\end{aligned}
$$

Requirement for uniform circular motion:

$$
F_{r}=\frac{m v^{2}}{r}
$$

Rotational motion:

$$
\begin{aligned}
& d=\theta r \\
& v=\omega r \quad \omega=\frac{d \theta}{d t} \\
& a=\alpha r \quad \alpha=\frac{d \omega}{d t}
\end{aligned}
$$

Gravitational force:

$$
\begin{aligned}
& \overrightarrow{\mathbf{F}}=G \frac{m_{1} m_{2}}{r^{2}} \hat{\mathbf{r}} \\
& \overrightarrow{\mathbf{F}}=m \overrightarrow{\mathbf{g}} \quad(\text { close to the surface of the Earth) }
\end{aligned}
$$

Electrostatic force:

$$
\overrightarrow{\mathbf{F}}=-\frac{1}{4 \pi \varepsilon_{0}} \frac{q_{1} q_{2}}{r^{2}} \hat{\mathbf{r}}
$$

Harmonic motion:

$$
\begin{aligned}
& F=-k x \\
& x(t)=x_{\max } \cos (\omega t+\phi) \text { where } \omega=\sqrt{\frac{k}{m}} \\
& T=\frac{2 \pi}{\omega}
\end{aligned}
$$

Damped harmonic motion:

$$
x(t)=x_{m} e^{-\frac{b t}{2 m}} e^{i t \sqrt{\frac{k}{m}}}
$$

Driven harmonic motion:

$$
x(t)=\frac{F_{0}}{\omega_{0}^{2}-\omega^{2}} \cos (\omega t+\phi)
$$

Stress and strain:

$$
\begin{aligned}
& \frac{F}{A}=Y \frac{\Delta L}{L} \\
& Y=\frac{k_{s}}{d}
\end{aligned}
$$

Work done by a force:

$$
\begin{array}{rlr}
W & =\overrightarrow{\mathbf{F}} \cdot \overrightarrow{\mathbf{d}} \quad \text { constant force } \\
& =\int_{\overrightarrow{\mathbf{r}}_{1}}^{\overrightarrow{\mathbf{r}}_{2}} \overrightarrow{\mathbf{F}} \cdot d \overrightarrow{\mathbf{r}} \quad \text { variable force }
\end{array}
$$

Power:

$$
P=\frac{d W}{d t}=\overrightarrow{\mathbf{F}} \cdot \overrightarrow{\mathbf{v}}
$$

Work-energy theorem:

$$
\begin{aligned}
& \Delta E_{\text {system }}=W \\
& E_{\text {system }}=\left(E_{1}+E_{2}+E_{3}+\ldots . .\right)+U
\end{aligned}
$$

Relativistic energy relations:

$$
E=\frac{m c^{2}}{\sqrt{1-\frac{v^{2}}{c^{2}}}}=m c^{2}+K
$$

$$
E^{2}-(p c)^{2}=\left(m c^{2}\right)^{2}
$$

$$
K=\frac{m c^{2}}{\sqrt{1-\frac{v^{2}}{c^{2}}}}-m c^{2} \underset{v \ll}{\rightarrow} \frac{1}{2} m v^{2}
$$

Potential energy:

$$
\begin{aligned}
& \Delta U=-W_{\text {intermal }}=-\int \overrightarrow{\mathbf{F}} \cdot d \overrightarrow{\mathbf{r}} \\
& \overrightarrow{\mathbf{F}}=-\vec{\nabla} U=\left(\begin{array}{c}
-\frac{\partial U}{\partial x} \\
-\frac{\partial U}{\partial y} \\
-\frac{\partial U}{\partial z}
\end{array}\right) \\
& U_{\text {gravity }}=-G \frac{m_{1} m_{2}}{r} \\
& U_{\text {gravity }}=m g h \\
& U_{\text {electric }}=\frac{1}{4 \pi \varepsilon_{0}} \frac{q_{1} q_{2}}{r} \\
& U_{\text {spring }}=\frac{1}{2} k x^{2}
\end{aligned}
$$

Heat capacity:

$$
\Delta E_{\text {thermal }}=m C \Delta T
$$

Friction forces:

$$
\begin{aligned}
& f_{s} \leq \mu_{s} N \\
& f_{k}=\mu_{k} N
\end{aligned}
$$

Drag force (air):

$$
\overrightarrow{\mathbf{F}}_{a i r}=-\frac{1}{2} C \rho A v^{2} \hat{\mathbf{v}}
$$

Energy levels for the Hydrogen atom:

$$
E_{N}=\frac{-13.6}{N^{2}} \mathrm{eV}, N=1,2,3, \ldots
$$

Vibrational energy levels:

$$
E_{N}=E_{0}+N \hbar \omega_{0}=E_{0}+N \hbar \sqrt{\frac{k_{s}}{m}}, N=0,1,2, . .
$$

Energy and wavelength of light:

$$
E_{\text {photon }}=\frac{h c}{\lambda_{\text {light }}}
$$

Center of mass:

$$
\begin{aligned}
& \overrightarrow{\mathbf{r}}_{c m}=\frac{\sum_{i} m_{i} \overrightarrow{\mathbf{r}}_{i}}{\sum_{i} m_{i}}=\frac{1}{M} \sum_{i} m_{i} \overrightarrow{\mathbf{r}}_{i} \\
& \overrightarrow{\mathbf{r}}_{c m}=\frac{\int \overrightarrow{\mathbf{r}} d m}{\int d m}=\frac{1}{M} \int \overrightarrow{\mathbf{r}} d m
\end{aligned}
$$

Motion of the center of mass:

$$
M \overrightarrow{\mathbf{a}}_{c m}=\overrightarrow{\mathbf{F}}_{n e t, e x t}
$$

Gravitational potential energy of a multi-particle system:

$$
U=M g y_{c m}
$$

Kinetic energy of a multi-particle system:

$$
K=K_{\text {trans }}+K_{r e l}=\frac{1}{2} M v_{c m}^{2}+K_{r e l}
$$

Impulse of a force:

$$
\overrightarrow{\mathbf{J}}=\int \overrightarrow{\mathbf{F}} d t
$$

Momentum and impulse:

$$
\overrightarrow{\mathbf{J}}=\overrightarrow{\mathbf{p}}_{f}-\overrightarrow{\mathbf{p}}_{i}
$$

Conservation of linear momentum:

$$
\Delta \overrightarrow{\mathbf{P}}_{\text {system }}+\Delta \overrightarrow{\mathbf{P}}_{\text {surroundings }}=0
$$

Elastic collision in one dimension (mass 2 at rest before the collision):

$$
\begin{aligned}
& v_{1 f}=\frac{m_{1}-m_{2}}{m_{1}+m_{2}} v_{1 i} \\
& v_{2 f}=\frac{2 m_{1}}{m_{1}+m_{2}} v_{1 i}
\end{aligned}
$$

Completely inelastic collision in one dimension (mass 2 at rest before the collision):

$$
v_{f}=\frac{m_{1}}{m_{1}+m_{2}} v_{i}
$$

Moment of inertia:

$$
\begin{array}{ll}
I=\sum_{i} m_{i} r_{i}^{2} & \text { Discreet mass distribution } \\
I=\int_{\text {Volume }} r^{2} d m & \text { Continuous mass distribution }
\end{array}
$$

Kinetic energy of a rotating rigid object:

$$
K=\frac{1}{2} I \omega^{2}
$$

Torque:

$$
\vec{\tau}=\overrightarrow{\mathbf{r}} \times \overrightarrow{\mathbf{F}}
$$

Newton's "second" law for rotational motion:

$$
\vec{\tau}=I \vec{\alpha}
$$

Angular momentum of a single particle:

$$
\overrightarrow{\mathbf{L}}=\overrightarrow{\mathbf{r}} \times \overrightarrow{\mathbf{p}}
$$

Angular momentum of a rotating rigid object:

$$
\overrightarrow{\mathbf{L}}=I \vec{\omega}
$$

The angular momentum principle:

$$
\frac{d \overrightarrow{\mathbf{L}}}{d t}=(\overrightarrow{\mathbf{r}} \times \overrightarrow{\mathbf{F}})_{\mathrm{net}, \mathrm{ext}}=\vec{\tau}_{\mathrm{net}, \mathrm{ext}}
$$

Number of micro states:

$$
\Omega=\frac{(q+N-1)!}{q!(N-1)!}
$$

Definition of entropy S :

$$
S=k \ln \Omega
$$

Definition of temperature T :

$$
\frac{1}{T}=\frac{d S}{d E_{\mathrm{int}}}
$$

The Boltzmann distribution:

$$
P(\Delta E) \propto e^{-\Delta E / k T}
$$

The Maxwell-Boltzmann velocity distribution:

$$
P(v)=4 \pi\left(\frac{M}{2 \pi k T}\right)^{\frac{3}{2}} v^{2} e^{-\frac{1}{2} M v^{2}(k T)}
$$

Root-mean-square speed:

$$
v_{r m s}=\sqrt{\overline{v^{2}}}=\sqrt{\frac{3 k T}{M}}
$$

Average translational kinetic energy of an ideal gas:

$$
\bar{K}_{\text {trans }}=\frac{3}{2} k T
$$

Rate of thermal energy transfer:

$$
\frac{d Q}{d t}=\sigma A \frac{T_{H}-T_{L}}{L}
$$

Efficiency of a heat engine:

$$
\text { efficiency }=\frac{|W|}{Q_{H}}=1-\frac{T_{L}}{T_{H}}
$$

Quality factor of a heat pump:

$$
K=\frac{\left|Q_{C}\right|}{|W|}
$$

Work done by a gas:

$$
W=\int_{V_{1}}^{V_{2}} p d V
$$

First law of thermodynamics:

$$
\Delta E_{\text {system }}=W+Q
$$

Isothermal compression:

$$
W=N k T \ln \left(\frac{V_{1}}{V_{2}}\right)
$$

Adiabatic compressions:

$$
p V^{\gamma}=p V^{C_{p} / C_{V}}=\mathrm{constant}
$$

Heat capacity C defined:

$$
\Delta Q=C \Delta T
$$

Heat capacities per molecule for ideal gasses:

$$
C_{V}=\frac{3}{2} k \quad \text { monatomic gas }
$$

$C_{V} \geq \frac{3}{2} k \quad$ other gases

$$
C_{p}=C_{V}+k
$$

