
\qquad
1

2

Physics 141.
Course information.

- Homework 10 is due on Friday December 8 at noon.
- Homework set 11 is due on Friday December 15 at noon.
- To calculate the final homework grade, I remove the lowest homework grade and then take the average of the remaining 10 homework grades. If you are happy with homework grades $1-10$, you can consider homework 11 as optional.

4

The real equation of state.
Different points of view.

\qquad
\qquad
\qquad

5

The real equation of state.
Different points of view.
Note the curvature of the solid-liquid line.

7

The first law of thermodynamics.
Adding/removing heat from a system.

- Consider a closed system:
- Closed system
- No change in mass
- Change in energy allowed (exchange with environment)
- Isolated system:
- Closed system that does not allow an exchange of energy
- The internal energy of the system can change and will be equal to the heat added to the system minus the work done by the system: $\Delta U=Q-W$ (note: this is the work-energy theorem).
- Note: keep track of the signs:
- Heat: $Q>0 \mathrm{~J}$ means heat added, $Q<0 \mathrm{~J}$ means heat lost
- Work: $W>0$ J mean work done by the system, $W<0$ J means work done on the system
Frank L. H. Wolfs Department of Physics and Astronomy, University of Rochester, Lecture 24, Page 8
8

The first law of thermodynamics.
Isothermal processes.

- An isothermal process is a process in which the temperature of the system is kept constant.
- This can be done by keeping the system in contact with a large heat reservoir and making all changes slowly.
- Since the temperature of the system is constant, the internal energy of the system is constant: $\Delta U=0 \mathrm{~J}$.
- The first law of thermodynamics thus tells us that $Q=W$.
Frank L. H. Wolfs Department of Physics and Astronomy, University of Rochester, Lecture 24, Page 9

The first law of thermodynamics. \qquad Adiabatic processes.

- An adiabatic process is a process in which there is no flow of heat (the system is an isolated system).
- Adiabatic processes can also occur in non-isolated systems, if the change in state is carried out rapidly. A rapid change in the state of the system does not allow sufficient time for heat flow.
- The expansion of gases differs greatly depending on the process that is followed (see Figure).

Frank L. H. Wolfs Department of Physics and Astronomy, University of Rochester, Lecture 24, Page 10
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
10

Work done during expansion/compression.

\qquad
Consider an ideal gas at pressure p.
exerts a force F on a moveable piston, and $F=p A$
If the piston moves a distance $d l$,

$$
d W=F d l
$$

Note: $F a$ and $d l$ are parallel
The work done can be expressed in terms of the pressure and volume

$$
d W=p A d l=p d V
$$

11

Work done during expansion/compression.
Isobaric and isochoric processes.

- Isobaric process

Processes in which the pressure is
kept constant.

- $W_{\mathrm{A}}>\mathrm{B}=p d V=p_{A}\left(V_{B}-V_{A}\right)$

(a) Isobaric
- Isochoric process:
- Processes in which the volume is
kept constant.
- $W_{\mathrm{A}}>\mathrm{B}=p_{A}\left(V_{B}-V_{A}\right)=0$

[^0]
- Isothermal process:

$$
p=\frac{N k T}{V}
$$

- The work done during the change from state A to state B is

$$
\begin{aligned}
W & =\int_{V_{A}}^{V_{B}} p d V=N k T \int_{V_{A}}^{V_{B}} \frac{1}{V} d V \\
& =N k T \ln \left(\frac{V_{B}}{V_{A}}\right)
\end{aligned}
$$

\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
13

Work done during expansion/compression.

- The work done during the
\qquad expansion of a gas is equal to the area under the $p V$ curve.
- Since the shape of the $p V$ curve depends on the nature of the expansion, so does the work done:

- Isothermal: $W=N k T \ln \left(V_{B} / V_{A}\right)$
- Isochoric: $W=0$
- Isobaric: $W=p_{B}\left(V_{B}-V_{A}\right)$
- The work done to move state A to
state B can take on any value!

\qquad
\qquad
\qquad
\qquad
\qquad

First law of thermodynamics.
 Molecular specific heat.

- When we add heat to a system, its temperature will increase. - For solids and liquids, the increase in temperature is proportional to the heat added, and the constant of proportionality is called the specific heat of the solid or liquid.
- When we add heat to a gas, the increase in temperature will depend on the other parameters of the system. For example, keeping the volume constant will results in a temperature rise that is different from the rise we see when we keep the pressure constant (the heat capacities will differ):
$\begin{aligned}-Q & =N C_{r} \Delta T \\ -O & =N C_{P} \Delta T\end{aligned}$
(Constant Volume)
(Constant Pressure)
Here, C_{V} and C_{P} are the molecular specific heats for constant volume and constant pressure.
Frank L. H. Wolfs Department of Physics and Astronomy, University of Rochester, Lecture 24, Page 16
16

First law of thermodynamics.
Molecular specific heat ($p=$ constant).

- Consider what happens when we add
Q_{p} to the system while keeping its
pressure constant $\quad(p=N k T / V=$
constant).
- The work done by the gas will be $p \Delta V$.
- Using the ideal gas law, we can rewrite P
the work done by the gas as
$\quad W=p \Delta V=N k \Delta T$.
- The change in the internal energy of
the gas is thus equal to
$\Delta U=Q_{p}-W=Q_{p}-N k \Delta T$
- Using the definition of C_{P} we can
rewrite this relation as
$\Delta U=N C_{P} \Delta T-N k \Delta T=N\left(C_{P}-k\right) \Delta T$
Department of Physics and Astronomy, University of Rochester, Lecture 24, Page 17

17

First law of thermodynamics.
Molecular specific heat ($V=$ constant $)$.

First law of thermodynamics.
Molecular specific heat.

- Compare the isobaric and isochoric transitions that produce the same temperature change: and $\Delta U=N C_{V} \Delta T$ - Since in both cases the temperature changes by the same amount ΔT, the change in the internal energy ΔU will also be the same. - We thus conclude that $C_{P}-k=C_{V}$ or (b) Isochoric Frank L. H. WOolfs $C_{V}+k=(3 / 2) k+k=(5 / 2) k$	

\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
19

| Adiabatic processes $(Q=0 \mathrm{~J})$. |
| :--- | :--- |
| What is the shape of the pV curve? |

\qquad
\qquad
the gas is $N(3 / 2 k) \Delta T=N C_{V} \Delta T$
The first law of thermodynamics
thus tells us that

20

Adiabatic processes $(Q=0 \mathrm{~J})$.

- Integrating each term in the previous expression shows that
$\frac{C_{V}}{k} \ln T+\ln V=\ln T^{\frac{C_{V}}{k}}+\ln V=\ln V T^{\frac{C_{V}}{k}}=$ constant
or

$$
V T^{\frac{c_{v}}{k}}=\left(T V^{\frac{k}{c_{v}}}\right)^{\frac{C_{v}}{k}}=\text { constant }
$$

- This expression can also be written in terms of the pressure and volume (which is of course what we need to defined the curve in the pressure versus volume graph):

$$
T V^{\frac{k}{C_{v}}}=\left(\frac{p V}{N k}\right) V^{\frac{k}{c_{v}}}=\frac{p V^{\frac{C_{v}+k}{C_{V}}}}{N k}=\frac{p V^{\frac{C_{p}}{C_{v}}}}{N k}=\frac{p V^{\gamma}}{N k}=\text { constant }
$$

\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
22

23

[^0]: Frank L. H. Wolfs Department of Physics and Astronomy, University of Rochester, Lecture 24, Page 12

