

2

Physics 141. Lecture 23.

Course information:

- Laboratory # 5 lab report is due on Wednesday 12/6 at noon.
 Homework set # 10 is due on Friday 12/8 at noon.
 Results Exam # 3.
 Quiz
- Finish the discussion of Chapter 12: • The energy distribution of an ideal gas. • How do we confirm the energy distribution?
- Start the discussion of Supplement S1, Gases and Heat Engines: • The ideal gas law.

rank L. H. Wolfs Department of Physics and Astronomy, University of Rochester, Lecture 23, Page 3

Quiz lecture 23. PollEv.com/frankwolfs050 • The quiz today will have three questions. • I will collect your answers Live activities for teammates, students, and friends electronically using the Poll Everywhere system. • You have 30 seconds to answer each question. Frank L. H. Wolfs Department of Physics and Astronomy, University of Rochester, Lecture 23, Page 8

8

- The RMS velocities of individual gas molecules are large. For example, for hydrogen at room temperature, the RMS velocity is 1920 m/s.
- · Despite the large RMS velocity, the average diffusion velocity is much smaller and is largely determined by the mean-free path of the molecules. • We expect that the mean-free path is inversely proportional to the crosssectional area of the molecules and

inversely proportional to the density.

Frank L. H. Wolfs

The kinetic theory of gases. Thermodynamic variables.

- The kinetic theory of gases provides a framework to connect the microscopic properties of the molecules in a gas (such as their rms velocity) to the macroscopic properties of the gas (such as volume, temperature, and pressure).
- The volume of a gas is defined by the size of the enclosure of the gas. During a change in the state of a gas, the volume may or may not remain constant (this depends on the procedure followed).
- The temperature of a gas has been defined in terms of the entropy of the system (see discussion in Chapter 12).

Department of Physics and Astronomy, University of Rochester, Lecture 23, Page 13

- · We will now briefly discuss pressure.

Frank L. H. Wolfs

13

The equation of state of a gas.
Example problem.• A cylinder contains oxygen at 20°C and a pressure of 15
atm at a volume of 12 l. The temperature is raised to 35°C,
and the volume is reduced to 8.5 l. What is the final
pressure of the gas?• Since the amount of gas does not change, we can rewrite the
ideal gas law in the following way: pV/T = constant. Since
we know the initial state, we can determine the missing
information about the final state:
 $p_iV_i/T_i = p_iV_i/T_f$ Prank L.H. Wolfs

22

23

- Consider a gas contained in a container.The molecules in the gas will
- continuously collide with the walls of the vessel.Each time a molecule collides with the
- wall, it will carry out an elastic collision.
- Since the linear momentum of the molecule is changed, the linear momentum of the wall will change too.
- Since force is equal to the change in linear momentum per unit time, the gas will exert a force on the walls.

Frank L. H. Wolfs Department of Physics and Astronomy, University of Rochester, Lecture 23, Page 24

