Physics 141. Lecture 23.

The first and the best airline in the world.

December $5^{\text {th }}$.

An important day in the Netherlands.

Frank L. H. Wolfs
Department of Physics and Astronomy, University of Rochester, Lecture 23, Page 2

Physics 141. Lecture 23.

- Course information:
- Laboratory \# 5 - lab report is due on Wednesday $12 / 6$ at noon.
- Homework set \# 10 is due on Friday 12/8 at noon.
- Results Exam \# 3.
- Quiz
- Finish the discussion of Chapter 12:
- The energy distribution of an ideal gas.
- How do we confirm the energy distribution?
- Start the discussion of Supplement S1, Gases and Heat Engines:
- The ideal gas law.

Analysis of experiment \# 5 . Updated Timeline.

- $\sqrt{11 / 14}$: collisions in the May room
- $\sqrt{ } 11 / 20$: analysis files available.
- https://www.pas.rochester.edu/~tdimino/phy141/lab05/
- $\sqrt{ } 11 / 20$: each student has determined his/her best estimate of the velocities before and after the collisions (analysis during regular lab periods).
- $\sqrt{ } 11 / 21$: complete discussion and comparison of results with colliding partners and submit final results (velocities and errors).
- V 11/25: results will be compiled, linear momenta and kinetic energies will be determined, and results will be distributed.
- $\sqrt{ }$ 12/4: office hours by lab TA/TIs to help with analysis and conclusions.

- 12/6: students submit lab report \# 5 .

Results Exam \# 3.

Results Exam \# 3.

Results Exam 3

Results Exam \# 3.

Quiz lecture 23. PollEv.com/frankwolfs050

- The quiz today will have three questions.
- I will collect your answers electronically using the Poll Everywhere system.
- You have 30 seconds to answer each question.

Probing molecular speed. The mean-free path.

- The RMS velocities of individual gas molecules are large. For example, for hydrogen at room temperature, the RMS velocity is $1920 \mathrm{~m} / \mathrm{s}$.
- Despite the large RMS velocity, the average diffusion velocity is much smaller and is largely determined by the mean-free path of the molecules.
- We expect that the mean-free path is inversely proportional to the crosssectional area of the molecules and inversely proportional to the density.

Typical values of the mean-free path are between 10^{-8} and $10^{-7} \mathrm{~m}$

Probing molecular speeds in liquids.

$0.5 \mu \mathrm{~m}$ particles in water, $50 / 50$ glycerol-water, $75 / 25$ glycerol-water, glycerol

http://www.physics.emory.edu/~weeks/squishy/BrownianMotionLab.html

Chapter 13. Aka Supplement S1.

Supplement S1. The kinetic theory of gases.

http://eml.ou.edu/Physics/module/thermal/ketcher/Idg4.avi

The kinetic theory of gases. Thermodynamic variables.

- The kinetic theory of gases provides a framework to connect the microscopic properties of the molecules in a gas (such as their rms velocity) to the macroscopic properties of the gas (such as volume, temperature, and pressure).
- The volume of a gas is defined by the size of the enclosure of the gas. During a change in the state of a gas, the volume may or may not remain constant (this depends on the procedure followed).
- The temperature of a gas has been defined in terms of the entropy of the system (see discussion in Chapter 12).
- We will now briefly discuss pressure.

Thermodynamic variables. Pressure.

- Pressure is an important thermodynamic variable.
- Pressure is defined as the force per unit area.
- The SI unit is pressure is the Pascal: $1 \mathbf{P a}=1 \mathbf{N} / \mathbf{m}^{2}$. Another common unit is the atm (atmospheric pressure) which is the pressure exerted by the atmosphere on us (1 atm $=$ $1.013 \times 10^{5} \mathrm{~N} / \mathrm{m}^{2}$).
- A pressure of 1 atm will push a Note: if we would use water, the mercury column up by 76 cm .

column would be about 10 m high.

Thermodynamic variables. Pressure.

- Many devices that measure pressure, actually measure the pressure difference between the pressure of interest and the atmospheric pressure.
- Atmospheric pressure changes with altitude. The higher you go, the less air is pressing on your head! Airplanes use the atmospheric pressure to measure altitude.
- But keep into consideration that the atmospheric pressure at a fixed location and altitude is not constant!

Thermodynamic variables. Pressure.

The kinetic theory of gases. Thermodynamic variables.

- The volume of a gas is defined by the size of the enclosure of the gas. During a change in the state of a gas, the volume may or may not remain constant (this depends on the procedure followed).
- The temperature of a gas has been defined in terms of the entropy of the system (see discussion in Chapter 12).
- The pressure of a gas is defined as the force per unit area. The SI unit is pressure is the Pascal: $1 \mathrm{~Pa}=1 \mathrm{~N} / \mathrm{m}^{2}$. Another common unit is the atm (atmospheric pressure) which is the pressure exerted by the atmosphere on us (1 $\mathrm{atm}=1.013 \times 10^{5} \mathrm{~N} / \mathrm{m}^{2}$).

The equation of state of a gas.

- In order to specify the state of a gas, we need to measure its temperature, its volume, and its pressure. The relation between these variables and the mass of the gas is called the equation of state.
- The equation of state of a gas was initially obtained on the basis of observations.

- Boyle's Law (1627-1691):
$\boldsymbol{p} \boldsymbol{V}=$ constant for gases maintained at constant temperature.
- Charle's Law (1746-1823):
$\boldsymbol{V} / \boldsymbol{T}=$ constant for gases maintained at constant pressure.
- Gay-Lussac's Law (1778-1850):
$\boldsymbol{p} / \boldsymbol{T}=$ constant for gases maintained at constant volume

The equation of state of a gas.

- Combining the various gas laws we can obtain a single more general relation between pressure, temperature, and volume: $p V=$ constant T.
- Another observation that needs to be included is the dependence on the amount of gas: if pressure and temperature are kept constant, the volume is proportional to the
 mass $\mathrm{m}: p V=$ constant $\mathrm{m} T$.

The equation of state of a gas.

- The equation of state of a gas can be written as

$$
p V=N k T
$$

where

- $p=$ pressure (in Pa).
- $V=$ volume (in m^{3}).
- $N=$ number of molecules of gas $\left(1\right.$ mole $=6.02 \times 10^{23}$ molecules or atoms). Note the number of molecules in a mole is also known as Avogadro's number N_{A}.
- $T=$ temperature (in K).
- Note: the equation of state is the equation of state of an ideal gas. Gases at very high pressure and/or close to the freezing point show deviations from the ideal gas law.

3 Minute 34 Second Intermission.

- Since paying attention for 1 hour and 15 minutes is hard when the topic is physics, let's take a 3 minute 34 second intermission.
- You can:
- Stretch out.
- Talk to your neighbors.
- Ask me a quick question.
- Enjoy the fantastic music.
- Solve a WeBWorK problem.

The equation of state of a gas. Example problem.

- A cylinder contains oxygen at $20^{\circ} \mathrm{C}$ and a pressure of 15 atm at a volume of 121 . The temperature is raised to $35^{\circ} \mathrm{C}$, and the volume is reduced to 8.5 l . What is the final pressure of the gas?
- Since the amount of gas does not change, we can rewrite the ideal gas law in the following way: $p V / T=$ constant. Since we know the initial state, we can determine the missing information about the final state:

$$
p_{\mathrm{i}} V_{\mathrm{i}} / T_{\mathrm{i}}=p_{\mathrm{f}} V_{\mathrm{f}} / T_{\mathrm{f}}
$$

The equation of state of a gas. Example problem.

- The final pressure of the gas is equal to

$$
p_{\mathrm{f}}=p_{\mathrm{i}}\left(V_{\mathrm{i}} / V_{\mathrm{f}}\right) /\left(T_{\mathrm{i}} / T_{\mathrm{f}}\right)
$$

- Note:
- This relation will preserve the units of pressure.
- The units of volume cancel, and we can keep the volume in units of liters. Note: for whatever we unit we choose, zero volume in SI units, correspond to zero volume in all other units.
- The units of temperature must be in Kelvin. The temperature ratio $T_{\mathrm{i}} / T_{\mathrm{f}}=(273.15+20) /(273.15+35)=0.951$ when T is expressed in Kelvin. The ratio would be 0.571 when T is expressed in Celsius.
- When we use the correct units, we find that $p_{\mathrm{f}}=22$ atm.

The molecular point of view of a gas.

- Consider a gas contained in a container.
- The molecules in the gas will continuously collide with the walls of the vessel.
- Each time a molecule collides with the wall, it will carry out an elastic collision.
- Since the linear momentum of the molecule is changed, the linear momentum of the wall will change too.
- Since force is equal to the change in linear momentum per unit time, the gas will exert a force on the walls.

The molecular point of view of a gas.

- Consider the collision of a single molecule with the left wall.
- In this collision, the linear momentum of the molecule changes by $m v_{\mathrm{x}}-\left(-m v_{\mathrm{x}}\right)=2 m v_{\mathrm{x}}$.
- The same molecule will collide with this wall again after a time $2 l / v_{\mathrm{x}}$.
- The force that this single molecule exerts on the left wall is thus equal to

$$
\Delta p / \Delta t=\left(2 m v_{\mathrm{x}}\right) /\left(2 l / v_{\mathrm{x}}\right)=m v_{\mathrm{x}}^{2} / l
$$

The molecular point of view of a gas.

- The force that this single molecule exerts on the left wall is thus equal to

$$
F_{\text {left }}=m v_{\mathrm{x}}^{2} / l
$$

- If the pressure exerted on the left wall by this molecule is equal to

$$
p_{\text {left }}=F_{\text {left }} / A=m v_{\mathrm{x}}^{2} /(l A)
$$

where A is the area of the left wall.

- The volume of the gas is equal to $l A$ and we can thus rewrite the
 pressure on the left wall:

$$
p_{\mathrm{left}}=m v_{\mathrm{x}}^{2} / V
$$

The molecular point of view of a gas.

- The pressure that many molecules exerts on the left wall is equal to

$$
p_{\text {left }}=m\left(v_{1 \mathrm{x}}^{2}+v_{2 \mathrm{x}}^{2}+v_{3 \mathrm{x}}^{2}+\ldots\right) / V
$$

- This equation can be rewritten in terms of the average of the square of the x component of the molecular velocity and the number of molecules (N):

$$
p_{\text {left }}=m N\left(v_{\mathrm{x}}^{2}\right)_{\text {average }} / V
$$

- Assuming that there is no preferential direction, the average square of the x,
 y, and z components of the molecular velocity will be the same:

$$
\left(v_{\mathrm{x}}^{2}\right)_{\text {average }}=\left(v_{\mathrm{y}}^{2}\right)_{\text {average }}=\left(v_{\mathrm{z}}^{2}\right)_{\text {average }}
$$

The molecular point of view of a gas.

- The force on the left wall can be rewritten in terms of the average squared velocity

$$
p_{\text {left }}=m N\left(v^{2}\right)_{\text {average }} / 3 V
$$

- Assuming there is no preferential direction of motion of the molecules, the pressure on all walls will be the same and we thus conclude:

$$
p V=m N\left(v^{2}\right)_{\text {average }} / 3
$$

- Compare this to the ideal gas law:

$$
p V=N k T
$$

Simulating an ideal gas.

- Ideal gas simulations:
- Assume elastic collisions between the gas molecules.
- Assume elastic collisions between the gas molecules and the walls.
- Results agree very well with measured values.

Done for today!

