
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

Physics 141. \qquad Lecture 17.

- Course information.
- Quiz
- Topics to be discussed today (Chapter 11): \qquad
- Rotational Variables
- Rotational Kinetic Energy \qquad
- Torque

Physics 141. Course information.

- Homework set \# 7 is due on Friday 11/4 at noon.
- Homework set \# 8 is due on Friday 11/11 at noon.
- Lab report \# 4 is due on Wednesday 11/9 at noon.
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

The Personal Response System (PRS). Quiz.
Frank L. H. Wolls \quad Department of Physis a and Astronomy, University of foochester, Leeture 17 , Page
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

Rotational variables.

- The variables that are used to
describe rotational motion are:
- Angular position θ
- Angular velocity $\omega=d \theta / d t$
- Angular acceleration $\alpha=d \omega / d t$
- The rotational variables are related to the linear variables:
- Linear position $l=R \theta$
- Linear velocity $v=R \omega$
- Linear acceleration $a=R \alpha$

Frank L. H. Wolfs Department of Physics and Astronomy, University of Rochester, Lecture 17, Page

Rotational variables.

- Note: the acceleration $a_{\mathrm{t}}=r \alpha$ is only one of the two component of the acceleration of point P. The two components of the acceleration of point P are:
- The radial component: this component is always present since point P carried out circular motion around the axis of rotation.
- The tangential component: this component is present only when the angular acceleration is not the angular acce
equal to $0 \mathrm{rad} / \mathrm{s}^{2}$.
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

Rotational variables.

Angular velocity and acceleration are vectors! They have a magnitude and
a direction. The direction of ω is found using the right-hand rule.
The angular acceleration is parallel or anti-
parallel to the angular velocity:
If ω increases: parallel
If ω decreases: anti-parallel
Frank L. H. Wolfs
(a)
Department of Physics and Astronomy, University of Rochester, Lecture 17, Page 8
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

Rotational kinetic energy.

\qquad
\qquad

- Since the components of a rotating object have a non-zero (linear) velocity we can associate a kinetic energy with the rotational motion:

$$
K=\sum_{i} \frac{1}{2} m_{i} v_{i}^{2}=\frac{1}{2} \sum_{i} m_{i}\left(\omega r_{i}\right)^{2}=\frac{1}{2}\left(\sum_{i} m_{i} r_{i}^{2}\right) \omega^{2}=\frac{1}{2} I \omega^{2}
$$

- The kinetic energy is proportional to the rotational velocity ω. Note: the equation is similar to the translational kinetic energy $\left(1 / 2 m v^{2}\right)$ except that instead of being proportional to the the mass m of the object, the rotational kinetic energy is proportional to the moment of inertia I of the object:

$$
I=\sum_{i} m_{i} r_{i}^{2} \quad \text { Note: units of } I: \mathbf{k g} \mathbf{~ m}^{2}
$$

Frank L. H. Wolfs Department of Physics and Astronomy, University of Rochester, Lecture 17, Page of

The moment of inertia I.

Calculating I.

- The moment of inertia of an objects depends on the mass distribution of object and on the location of the rotation axis.
- For discrete mass distribution it can be calculated as follows:

$I=\int r^{2} d m$
Frank L. H. Wolfs Department of Physics and Astronomy, University of Rochester, Lecture 17, Page 10
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

Calculating the moment of inertia.
Sample problem.

- Consider a rod of length L and
mass m. What is the moment of
inertia with respect to an axis
through its center of mass?
- Consider a slice of the rod, with
width $d x$, located a distance x
from the rotation axis. The mass
$d m$ of this slice is equal to
$d m=\frac{m}{L} d x$
Frank L. H. Wolfs
Department of Physics and Astronomy, University of Rochester, Lecture 17, Page 11
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

Calculating the moment of inertia.
Parallel-axis theorem.

- Calculating the moment of inertial with respect to a symmetry axis of the object is in general easy.
- It is much harder to calculate the moment of inertia with respect to an axis that is not a symmetry axis.
- However, we can make a hard problem easier by using the parallel-axis theorem:
$I=I_{c m}+M h^{2}$

Frank L. H. Wolfs Department of Physics and Astronomy, University of Rochester, Lecture 17, Page 13

\qquad
\qquad
\qquad
\qquad
\qquad

Calculating the moment of inertia. Sample problem.

- Consider a rod of length L and mass m. What is the moment of inertia with respect to an axis through its left corner?
- We have determined the moment of inertia of this rod with respect to an axis through its center of mass. We use the parallel-axis

\qquad theorem to determine the moment of inertia with respect to the current axis:

$$
I=I_{c m}+m\left(\frac{L}{2}\right)^{2}=\frac{1}{12} m L^{2}+\frac{1}{4} m L^{2}=\frac{1}{3} m L^{2}
$$

\qquad

- Since paying attention for 1 hour and 15 minutes is hard when the topic is physics, let's take a 3 minute 2 second intermission.

You can:

- Stretch out
- Talk to your neighbors.
- Ask me a quick question
- Enjoy the fantastic music.
- Solve a WeBWorK problem.

Department of Physics and Astronomy, University of Rochester, Lecture 17, Page 15
\qquad
\qquad
\square
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

3 Minute 2 Second Intermission.

Torque.

- Consider a force F applied to an object that can only rotate.
- The force F can be decomposed into two two components:
- A radial component directed along the direction of the position vector r. The magnitude of this component is $F \cos \theta$. This component will not produce any motion.
- A tangential component perpendicular to the direction of the position vector r. The
magnitude of this component is $F \sin \theta$. This component will result
in rotational motion.

\qquad
\qquad
\qquad
\qquad
\qquad

Torque.

- If a mass m is located at the position
\qquad
on which the force is acting (and we
assume any other masses can be neglected), it will experience a linear acceleration equal to $F \sin \phi / m$.
- The corresponding angular acceleration α is equal to $\alpha=\frac{F \sin \phi}{m r}$
- Since in rotation motion the moment of inertia plays an important role, we will rewrite the angular acceleration

\qquad in terms of the moment of inertia:

$$
\alpha=\frac{r F \sin \phi}{m r^{2}}=\frac{r F \sin \phi}{I}
$$

Frank L. H. Wolfs $m r^{2} \quad$ Department of Physics and Astronomy, University of Rochester, Lecture 17, Page 11

Torque.

Torque.

- In general the torque associated with a force F is equal to

$$
|\vec{\tau}|=r F \sin \theta=|\vec{r} \times \vec{F}|
$$

- The arm of the force (also called the moment arm) is defined as $r \sin \theta$ The arm of the force is the perpendicular distance of the axis of rotation from the line of action of the force.
If the arm of the force is 0 , the torque is 0 , and there will be no rotation
- The maximum torque is achieved when the angle θ is 90°.
Frank L. H. Wolfs Department of Physics and Astronomy, University of Rochester, Lecture 17, Page 10

Rotational motion.
Sample problem.

- Consi mass moun with cord rim accele the a disk, - Expec - Lin app kg .			
Frank L. H. Wolfs			

Rotational motion.
Sample problem.

- Start with considering the forces
and torques involved
- Define the sign convention to be used.
- The block will move down and we choose the positive and we choose the positive y axis in the direction of the linear acceleration
- The net force on mass m is equal to
$m a=m g-T$

Frank L. H. Wolfs Department of Physics and Astronomy, University of Rochester, Lecture 17, Page 2

(a)
$\mathrm{Si}_{-1} \mathrm{P}_{1}$
${ }_{(0)}^{R-}$

Rotational motion.
Sample problem.
- Start with considering the forces
and torques involved.
- Define the sign convention to be
used.
- The block will move down and
we choose the positive and we
choose the positive y axis in the
direction of the linear
acceleration.
- The net force on mass m is equal
to mg
ma $=m g-T$

\qquad

- The net torque on the pulley is equal
to
$\tau=R T$
- The resulting angular acceleration is equal to

$$
\alpha=\frac{\tau}{I}=\frac{R T}{\frac{1}{2} M R^{2}}=\frac{2 T}{M R}
$$

- Assuming the cord is not slipping we
 can determine the linear acceleration: $a=\alpha R=2 \frac{T}{M}$
Frank L. H. Wolfs Department of Physics and Astronomy, University of Rochester, Lecture 17, Page 22
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

Frank L. H. Wolfs Department of Physics and Astronomy, University of Rochester, Lecture 17, Page 23
\qquad

\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

