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Physics 141.
Lecture 17.
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Physics 141.
Lecture 17.

• Course information.

• Quiz

• Topics to be discussed today (Chapter 11):
• Rotational Variables

• Rotational Kinetic Energy

• Torque
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Physics 141.
Course information.

• Homework set # 7 is due on Friday 11/4 at noon.

• Homework set # 8 is due on Friday 11/11 at noon.

• Lab report # 4 is due on Wednesday 11/9 at noon.



2

Frank L. H. Wolfs Department of Physics and Astronomy, University of Rochester, Lecture 17, Page 4

The Personal Response System (PRS).
Quiz.
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Rotational variables.

• The variables that are used to
describe rotational motion are:

• Angular position q

• Angular velocity ω = dq /dt

• Angular acceleration α = dω/dt

• The rotational variables are
related to the linear variables:

• Linear position l = Rq

• Linear velocity v = Rω

• Linear acceleration a = Rα
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Rotational variables.

• Things to consider when looking
at the rotation of rigid objects
around a fixed axis:

• Each part of the rigid object has
the same angular velocity.

• Only those parts that are located
at the same distance from the
rotation axis have the same linear
velocity.

• The linear velocity of parts of the
rigid object increases with
increasing distance from the
rotation axis.
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Rotational variables.

• Note: the acceleration at = rα is
only one of the two component of
the acceleration of point P. The
two components of the
acceleration of point P are:

• The radial component: this
component is always present since
point P carried out circular motion
around the axis of rotation.

• The tangential component: this
component is present only when
the angular acceleration is not
equal to 0 rad/s2.
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Rotational variables.

Angular velocity and acceleration are vectors!  They have a magnitude and 
a direction.  The direction of ω is found using the right-hand rule.
The angular acceleration is parallel or anti-
parallel to the angular velocity:

If ω increases: parallel
If ω decreases: anti-parallel
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Rotational kinetic energy.

• Since the components of a rotating object have a non-zero
(linear) velocity we can associate a kinetic energy with the
rotational motion:

• The kinetic energy is proportional to the rotational velocity
ω. Note: the equation is similar to the translational kinetic
energy (1/2 mv2) except that instead of being proportional to
the the mass m of the object, the rotational kinetic energy is
proportional to the moment of inertia I of the object:

Note: units of I: kg m2
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The moment of inertia I.
Calculating I.

• The moment of inertia of an
objects depends on the mass
distribution of object and on the
location of the rotation axis.

• For discrete mass distribution it
can be calculated as follows:

• For continuous mass distributions
we need to integrate over the
mass distribution:
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Calculating the moment of inertia.
Sample problem.

• Consider a rod of length L and
mass m. What is the moment of
inertia with respect to an axis
through its center of mass?

• Consider a slice of the rod, with
width dx, located a distance x
from the rotation axis. The mass
dm of this slice is equal to

axis
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Calculating the moment of inertia.
Sample problem.

• The moment of inertia dI of this
slice is equal to

• The moment of inertia of the rod
can be found by adding the
contributions of all of the slices
that make up the rod:
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Calculating the moment of inertia.
Parallel-axis theorem.

• Calculating the moment of
inertial with respect to a
symmetry axis of the object is in
general easy.

• It is much harder to calculate the
moment of inertia with respect to
an axis that is not a symmetry
axis.

• However, we can make a hard
problem easier by using the
parallel-axis theorem:

Easy

HardIcm
I

  I = Icm + Mh2
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Calculating the moment of inertia.
Sample problem.

• Consider a rod of length L and
mass m. What is the moment of
inertia with respect to an axis
through its left corner?

• We have determined the moment
of inertia of this rod with respect
to an axis through its center of
mass. We use the parallel-axis
theorem to determine the moment
of inertia with respect to the
current axis:
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3 Minute 2 Second Intermission. 

• Since paying attention for 1 hour
and 15 minutes is hard when the
topic is physics, let’s take a 3
minute 2 second intermission.

• You can:
• Stretch out.
• Talk to your neighbors.
• Ask me a quick question.
• Enjoy the fantastic music.
• Solve a WeBWorK problem.
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Torque.

• Consider a force F applied to an
object that can only rotate.

• The force F can be decomposed
into two two components:
• A radial component directed

along the direction of the position
vector r. The magnitude of this
component is Fcosq. This
component will not produce any
motion.

• A tangential component,
perpendicular to the direction of
the position vector r. The
magnitude of this component is
Fsinq. This component will result
in rotational motion.

A
r

φ

F
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Torque.
• If a mass m is located at the position

on which the force is acting (and we
assume any other masses can be
neglected), it will experience a linear
acceleration equal to Fsinφ/m.

• The corresponding angular
acceleration α is equal to

• Since in rotation motion the moment
of inertia plays an important role, we
will rewrite the angular acceleration
in terms of the moment of inertia:

A
r

φ

F

  
α = rF sinφ

mr 2 = rF sinφ
I

  
α = F sinφ

mr
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Torque.

• Consider rewriting the previous
equation in the following way:

rFsinf = Iα
• The left-hand-side of this equation is

called the torque τ of the force F:
τ = Iα

• This equation looks similar to
Newton’s second law for linear
motion:

F = ma
• Note:

linear rotational
mass m moment I
force F torque τ

A
r

φ

F
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Torque.

• In general the torque associated with
a force F is equal to

• The arm of the force (also called the
moment arm) is defined as rsinq.
The arm of the force is the
perpendicular distance of the axis of
rotation from the line of action of the
force.

• If the arm of the force is 0, the torque
is 0, and there will be no rotation.

• The maximum torque is achieved
when the angle q is 90°.

!τ = rF sinθ = !r ×
!
F
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Rotational motion.
Sample problem.

• Consider a uniform disk with
mass M and radius R. The disk is
mounted on a fixed axle. A block
with mass m hangs from a light
cord that is wrapped around the
rim of the disk. Find the
acceleration of the falling block,
the angular acceleration of the
disk, and the tension of the cord.

• Expectations:
• Linear acceleration should

approach g when M approaches 0
kg.

m

M, R
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Rotational motion.
Sample problem.

• Start with considering the forces
and torques involved.

• Define the sign convention to be
used.

• The block will move down and
we choose the positive and we
choose the positive y axis in the
direction of the linear
acceleration.

• The net force on mass m is equal
to

T

mg

a

T

R

 ma = mg − T
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Rotational motion.
Sample problem.

• The net torque on the pulley is equal
to

• The resulting angular acceleration is
equal to

• Assuming the cord is not slipping we
can determine the linear acceleration:

T

mg

a

T

R

 τ = RT

  

α =
τ
I
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RT
1
2

MR2
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2T
MR

  
a = αR = 2

T
M
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Rotational motion.
Sample problem.

• We now have two expressions for
a:

• Solving these equations we find:

T

mg

a

T

R

Note: a = g when M = 0 kg!!!

  
a = 2

T
M

 
a =

mg − T
m

= g −
T
m

  
T =

M
M + 2m

mg

  
a =

2m
M + 2m

g
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Done for today!

Landing at Amsterdam Airport.


