The momentum principle:

$$
\begin{aligned}
& d \overrightarrow{\mathbf{p}}=\overrightarrow{\mathbf{F}}_{n e t} d t \\
& \overrightarrow{\mathbf{p}}=\frac{m \overrightarrow{\mathbf{v}}}{\sqrt{1-\frac{v^{2}}{c^{2}}}} \\
& \overrightarrow{\mathbf{p}}_{\text {new }}=\overrightarrow{\mathbf{p}}_{\text {old }}+\overrightarrow{\mathbf{F}}_{\text {net }} \Delta t \\
& \overrightarrow{\mathbf{r}}_{\text {new }}=\overrightarrow{\mathbf{r}}_{\text {old }}+\frac{1}{\sqrt{1+\left(\frac{p}{m c}\right)^{2}}}\left(\frac{\overrightarrow{\mathbf{p}}}{m}\right) \Delta t
\end{aligned}
$$

Equations of motion in 1D for constant acceleration and low velocities ($v \ll c$):

$$
\begin{aligned}
& x(t)=x_{0}+v_{0} t+\frac{1}{2} a t^{2} \\
& v(t)=\frac{d x(t)}{d t}=v_{0}+a t \\
& a(t)=\frac{d v(t)}{d t}=a=\text { constant }
\end{aligned}
$$

Requirement for uniform circular motion:

$$
F_{r}=\frac{m v^{2}}{r}
$$

Rotational motion:

$$
\begin{aligned}
& d=\theta r \\
& v=\omega r \quad \omega=\frac{d \theta}{d t} \\
& a=\alpha r \quad \alpha=\frac{d \omega}{d t}
\end{aligned}
$$

Gravitational force:

$$
\begin{aligned}
& \overrightarrow{\mathbf{F}}=G \frac{m_{1} m_{2}}{r^{2}} \hat{\mathbf{r}} \\
& \overrightarrow{\mathbf{F}}=m \overrightarrow{\mathbf{g}} \quad \text { (close to the surface of the Earth) }
\end{aligned}
$$

Electrostatic force:

$$
\overrightarrow{\mathbf{F}}=-\frac{1}{4 \pi \varepsilon_{0}} \frac{q_{1} q_{2}}{r^{2}} \hat{\mathbf{r}}
$$

Harmonic motion:

$$
\begin{aligned}
& F=-k x \\
& x(t)=x_{\max } \cos (\omega t+\phi) \text { where } \omega=\sqrt{\frac{k}{m}} \\
& T=\frac{2 \pi}{\omega}
\end{aligned}
$$

Damped harmonic motion:

$$
x(t)=x_{m} e^{-\frac{b t}{2 m}} e^{i t \sqrt{\frac{k}{m}}}
$$

Driven harmonic motion:

$$
x(t)=\frac{F_{0}}{\omega_{0}^{2}-\omega^{2}} \cos (\omega t+\phi)
$$

Stress and strain:

$$
\begin{aligned}
& \frac{F}{A}=Y \frac{\Delta L}{L} \\
& Y=\frac{k_{s}}{d}
\end{aligned}
$$

Friction forces:

$$
\begin{aligned}
& f_{s} \leq \mu_{s} N \\
& f_{k}=\mu_{k} N
\end{aligned}
$$

Drag force (air):

$$
\overrightarrow{\mathbf{F}}_{\text {air }}=-\frac{1}{2} C \rho A v^{2} \hat{\mathbf{v}}
$$

Mathematical Formulas

A-1 Quadratic Formula

If $\quad a x^{2}+b x+c=0$
then $\quad x=\frac{-b \pm \sqrt{b^{2}-4 a c}}{2 a}$

A-2 Binomial Expansion

$$
\begin{aligned}
(1 \pm x)^{n} & =1 \pm n x+\frac{n(n-1)}{2!} x^{2} \pm \frac{n(n-1)(n-2)}{3!} x^{3}+\cdots \\
(x+y)^{n} & =x^{n}\left(1+\frac{y}{x}\right)^{n}=x^{n}\left(1+n \frac{y}{x}+\frac{n(n-1)}{2!} \frac{y^{2}}{x^{2}}+\cdots\right)
\end{aligned}
$$

A-3 Other Expansions

$$
\begin{aligned}
e^{x} & =1+x+\frac{x^{2}}{2!}+\frac{x^{3}}{3!}+\cdots \\
\ln (1+x) & =x-\frac{x^{2}}{2}+\frac{x^{3}}{3}-\frac{x^{4}}{4}+\cdots \\
\sin \theta & =\theta-\frac{\theta^{3}}{3!}+\frac{\theta^{5}}{5!}-\cdots \\
\cos \theta & =1-\frac{\theta^{2}}{2!}+\frac{\theta^{4}}{4!}-\cdots \\
\tan \theta & =\theta+\frac{\theta^{3}}{3}+\frac{2}{15} \theta^{5}+\cdots \quad|\theta|<\frac{\pi}{2}
\end{aligned}
$$

In general: $\quad f(x)=f(0)+\left(\frac{d f}{d x}\right)_{0} x+\left(\frac{d^{2} f}{d x^{2}}\right)_{0} \frac{x^{2}}{2!}+\cdots$

A-4 Exponents

$$
\begin{aligned}
\left(a^{n}\right)\left(a^{m}\right) & =a^{n+m} & \frac{1}{a^{n}} & =a^{-n} \\
\left(a^{n}\right)\left(b^{n}\right) & =(a b)^{n} & a^{n} a^{-n} & =a^{0}=1 \\
\left(a^{n}\right)^{m} & =a^{n m} & a^{\frac{1}{2}} & =\sqrt{a}
\end{aligned}
$$

A-5 Areas and Volumes

Object	Surface area	Volume
Circle, radius r	πr^{2}	-
Sphere, radius r	$4 \pi r^{2}$	$\frac{4}{3} \pi r^{3}$
Right circular cylinder, radius r, height h	$2 \pi r^{2}+2 \pi r h$	$\pi r^{2} h$
Right circular cone, radius r, height h	$\pi r^{2}+\pi r \sqrt{r^{2}+h^{2}}$	$\frac{1}{3} \pi r^{2} h$

A-8 Vectors

Vector addition is covered in Sections 3-2 to 3-5.
Vector multiplication is covered in Sections 3-3, 7-2, and 11-2.

FIGURE A-5

FIGURE A-6

$\sin \theta=y / r>0$
$\cos \theta=x / r>0$
$\tan \theta=y / x>0$

Third Quadrant

$\sin \theta<0$
$\cos \theta<0$
$\tan \theta>0$

$\sin \theta>0$ $\cos \theta<0$
$\tan \theta<0$

Fourth Quadrant (270° to 360°)

$\sin \theta<0$ $\cos \theta>0$ $\tan \theta<0$

FIGURE A-7

A-9 Trigonometric Functions and Identities

The trigonometric functions are defined as follows (see Fig. A-5, $o=$ side opposite, $a=$ side adjacent, $h=$ hypotenuse. Values are given in Table A-2):

$$
\begin{array}{ll}
\sin \theta=\frac{o}{h} & \csc \theta=\frac{1}{\sin \theta}=\frac{h}{o} \\
\cos \theta=\frac{a}{h} & \sec \theta=\frac{1}{\cos \theta}=\frac{h}{a} \\
\tan \theta=\frac{o}{a}=\frac{\sin \theta}{\cos \theta} & \cot \theta=\frac{1}{\tan \theta}=\frac{a}{o}
\end{array}
$$

and recall that

$$
a^{2}+o^{2}=h^{2}
$$

[Pythagorean theorem].
Figure A-6 shows the signs (+ or -) that cosine, sine, and tangent take on for angles θ in the four quadrants $\left(0^{\circ}\right.$ to $\left.360^{\circ}\right)$. Note that angles are measured counterclockwise from the x axis as shown; negative angles are measured from below the x axis, clockwise: for example, $-30^{\circ}=+330^{\circ}$, and so on.

The following are some useful identities among the trigonometric functions:

$$
\begin{aligned}
\sin ^{2} \theta+\cos ^{2} \theta & =1 \\
\sec ^{2} \theta-\tan ^{2} \theta & =1, \csc ^{2} \theta-\cot ^{2} \theta=1 \\
\sin 2 \theta & =2 \sin \theta \cos \theta \\
\cos 2 \theta & =\cos ^{2} \theta-\sin ^{2} \theta=2 \cos ^{2} \theta-1=1-2 \sin ^{2} \theta \\
\tan 2 \theta & =\frac{2 \tan \theta}{1-\tan ^{2} \theta} \\
\sin (A \pm B) & =\sin A \cos B \pm \cos A \sin B \\
\cos (A \pm B) & =\cos A \cos B \mp \sin A \sin B \\
\tan (A \pm B) & =\frac{\tan A \pm \tan B}{1 \mp \tan A \tan B} \\
\sin \left(180^{\circ}-\theta\right) & =\sin \theta \\
\cos \left(180^{\circ}-\theta\right) & =-\cos \theta \\
\sin \left(90^{\circ}-\theta\right) & =\cos \theta \\
\cos \left(90^{\circ}-\theta\right) & =\sin \theta \\
\sin (-\theta) & =-\sin \theta \\
\cos (-\theta) & =\cos \theta \\
\tan (-\theta) & =-\tan \theta \\
\sin \frac{1}{2} \theta=\sqrt{\frac{1-\cos \theta}{2}, \cos \frac{1}{2} \theta} & =\sqrt{\frac{1+\cos \theta}{2}}, \tan \frac{1}{2} \theta=\sqrt{\frac{1-\cos \theta}{1+\cos \theta}} \\
\sin A \pm \sin B & =2 \sin \left(\frac{A \pm B}{2}\right) \cos \left(\frac{A \mp B}{2}\right)
\end{aligned}
$$

For any triangle (see Fig. A-7):

$$
\begin{array}{rlrl}
\frac{\sin \alpha}{a} & =\frac{\sin \beta}{b}=\frac{\sin \gamma}{c} & & \text { [Law of sines] } \\
c^{2} & =a^{2}+b^{2}-2 a b \cos \gamma . & \text { [Law of cosines] }
\end{array}
$$

Values of sine, cosine, tangent are given in Table A-2.

Derivatives and Integrals

Derivatives: General Rules

(See also Section 2-3.)

$$
\begin{aligned}
\frac{d x}{d x} & =1 \\
\frac{d}{d x}[a f(x)] & =a \frac{d f}{d x} \quad[a=\text { constant }] \\
\frac{d}{d x}[f(x)+g(x)] & =\frac{d f}{d x}+\frac{d g}{d x} \\
\frac{d}{d x}[f(x) g(x)] & =\frac{d f}{d x} g+f \frac{d g}{d x} \\
\frac{d}{d x}[f(y)] & =\frac{d f}{d y} \frac{d y}{d x} \quad[\text { chain rule }] \\
\frac{d x}{d y} & =\frac{1}{\left(\frac{d y}{d x}\right)} \quad \text { if } \frac{d y}{d x} \neq 0 .
\end{aligned}
$$

Derivatives: Particular Functions

$$
\begin{aligned}
\frac{d a}{d x} & =0 \quad[a=\text { constant }] \\
\frac{d}{d x} x^{n} & =n x^{n-1} \\
\frac{d}{d x} \sin a x & =a \cos a x \\
\frac{d}{d x} \cos a x & =-a \sin a x \\
\frac{d}{d x} \tan a x & =a \sec ^{2} a x \\
\frac{d}{d x} \ln a x & =\frac{1}{x} \\
\frac{d}{d x} e^{a x} & =a e^{a x}
\end{aligned}
$$

Indefinite Integrals: General Rules

(See also Section 7-3.)

$$
\begin{aligned}
\int d x & =x \\
\int a f(x) d x & =a \int f(x) d x \quad[a=\text { constant }] \\
\int[f(x)+g(x)] d x & =\int f(x) d x+\int g(x) d x \\
\int u d v & =u v-\int v d u \quad \text { [integration by parts: see also B }
\end{aligned}
$$

Indefinite Integrals: Particular Functions

(An arbitrary constant can be added to the right side of each equation.)

$$
\begin{aligned}
& \int a d x=a x \quad[a=\text { constant }] \\
& \int x^{m} d x=\frac{1}{m+1} x^{m+1} \quad[m \neq-1] \\
& \int \sin a x d x=-\frac{1}{a} \cos a x \\
& \int \cos a x d x=\frac{1}{a} \sin a x \\
& \int \tan a x d x=\frac{1}{a} \ln |\sec a x| \\
& \int \frac{1}{x} d x=\ln x \\
& \int \frac{d x}{\left(x^{2} \pm a^{2}\right)^{\frac{3}{2}}}=\frac{ \pm x}{a^{2} \sqrt{x^{2} \pm a^{2}}} \\
& \int \frac{x d x}{\left(x^{2} \pm a^{2}\right)^{\frac{3}{2}}}=\frac{-1}{\sqrt{x^{2} \pm a^{2}}} \\
& \int \sin ^{2} a x d x=\frac{x}{2}-\frac{\sin 2 a x}{4 a} \\
& \int x e^{-a x} d x=-\frac{e^{-a x}}{a^{2}}(a x+1) \\
& \int x^{2} e^{-a x} d x=-\frac{e^{-a x}}{a^{3}}\left(a^{2} x^{2}+2 a x+2\right) \\
& \int \frac{d x}{x^{2}+a^{2}}=\frac{1}{a} \tan ^{-1} \frac{x}{a} \\
& \int e^{a x} d x=\frac{1}{a} e^{a x} \\
& \int \frac{d x}{x^{2}-a^{2}}=\frac{1}{2 a} \ln \left(\frac{x-a}{x+a}\right) \quad\left[x^{2}>a^{2}\right] \\
& \int \frac{d x}{\sqrt{x^{2} \pm a^{2}}}=\ln \left(x+\sqrt{x^{2} \pm a^{2}}\right) \\
& \int \frac{d x}{\sqrt{a^{2}-x^{2}}}=\sin ^{-1}\left(\frac{x}{a}\right)=-\cos ^{-1}\left(\frac{x}{a}\right) \quad\left[\text { if } x^{2} \leq a^{2}\right] \\
& =-\frac{1}{2 a} \ln \left(\frac{a+x}{a-x}\right) \quad\left[x^{2}<a^{2}\right]
\end{aligned}
$$

A Few Definite Integrals

$$
\begin{aligned}
\int_{0}^{\infty} x^{n} e^{-a x} d x & =\frac{n!}{a^{n+1}} & \int_{0}^{\infty} x^{2} e^{-a x^{2}} d x & =\sqrt{\frac{\pi}{16 a^{3}}} \\
\int_{0}^{\infty} e^{-a x^{2}} d x & =\sqrt{\frac{\pi}{4 a}} & \int_{0}^{\infty} x^{3} e^{-a x^{2}} d x & =\frac{1}{2 a^{2}} \\
\int_{0}^{\infty} x e^{-a x^{2}} d x & =\frac{1}{2 a} & \int_{0}^{\infty} x^{2 n} e^{-a x^{2}} d x & =\frac{1 \cdot 3 \cdot 5 \cdots(2 n-1)}{2^{n+1} a^{n}} \sqrt{\frac{\pi}{a}}
\end{aligned}
$$

Integration by Parts

Sometimes a difficult integral can be simplified by carefully choosing the functions u and v in the identity:

$$
\int u d v=u v-\int v d u . \quad \text { [Integration by parts] }
$$

This identity follows from the property of derivatives

$$
\frac{d}{d x}(u v)=u \frac{d v}{d x}+v \frac{d u}{d x}
$$

or as differentials: $d(u v)=u d v+v d u$.
For example $\int x e^{-x} d x$ can be integrated by choosing $u=x$ and $d v=e^{-x} d x$ in the "integration by parts" cquation above:

$$
\begin{aligned}
\int x e^{-x} d x & =(x)\left(-e^{-x}\right)+\int e^{-x} d x \\
& =-x e^{-x}-e^{-x}=-(x+1) e^{-x}
\end{aligned}
$$

