Quantum Mechanics I - Module 7

1. Define the following operators:

$$
L^{2}=L_{x}^{2}+L_{y}^{2}+L_{z}^{2} \quad L_{ \pm}=L_{x} \pm i L_{y}
$$

Work out the following commutators. Try to use as many shortcuts as possible!
(a) $\left[L_{z}, x\right]$
(b) $\left[\mathrm{L}_{\mathrm{z}}, \mathrm{y}\right]$
(c) $\left[\mathrm{L}_{2}, \mathrm{z}\right]$
(d) $\left[L_{z}, p_{x}\right]$
(e) $\left[L_{z}, p_{y}\right]$
(f) $\left[L_{z}, p_{z}\right]$
(g) $\left[\mathrm{L}_{x}, \mathrm{~L}_{\mathrm{y}}\right]$
(h) $\left[\mathrm{L}^{2}, \mathrm{~L}_{\mathrm{x}}\right]$
(i) $\left[\mathrm{L}_{2}, \mathrm{~L}_{ \pm}\right]$
(j) $\left[\mathrm{L}^{2}, \mathrm{~L}_{2}\right]$
(k) $\left[\mathrm{L}_{2}, \mathrm{r}^{2}\right]$
(l) $\left[\mathrm{L}_{z}, \mathrm{p}^{2}\right]$
2. Use the previous question to show that the Hamiltonian

$$
H=\frac{p^{2}}{2 m}+V(r)
$$

commutes with all three components of L provided that V depends only on r.
3. Considering the hydrogen atom, what do you think the following equation means?

$$
H|211\rangle=E_{2}|211\rangle
$$

Write this equation as you are used to seeing it.

