Midterm Exam 1 February 18,2010
Physics 237 1230 pm - 1.45 pm

Physics 237, Midterm Exam #1
Thursday February 18,2010
12.30 pm — 1.45 pm

Do not turn the pages of the exam until you are instructed to do so.

Exam rules: You may use only a writing instrument while taking this test. You may not consult

any calculators, computers, books, or each other.

1. Problems 1 and 2 must be answered in booklet # 1.

2. Problems 3 and 4 must be answered in booklet # 2.

3. The answers need to be well motivated and expressed in terms of the variables used in the
problem. You will receive partial credit where appropriate, but only when we can read your
solution. Answers that are not motivated will not receive any credit, even if correct.

At the end of the exam, you need to hand in your exam, your “cheat sheet”, and the two blue

exam booklets. All items must be clearly labeled with your name, your student ID number, and

the day/time of your workshop.

Name:

ID number:

Workshop Day/Time:
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Midterm Exam 1 February 18,2010
Physics 237 1230 pm - 1.45 pm

Problem 1 (35 points) ANSWER IN BOOKLET 1

Consider a particle of mass m moving with a linear momentum p. Assume the velocity of the
particle is much less than the speed of light and relativistic effects do not need to be considered.
In order to describe the particle in terms of a matter wave, we first consider the following matter
wave:

W(xr)= sin(27t(—%— WD — sin (27 (—icx — vt))

a) What is the propagation velocity of this matter wave? Specify both the magnitude and the
direction of the propagation velocity. Express your answer in terms of xand v.

b) How does the propagation velocity of the matter wave compare with the velocity of the
particle?

Now consider that we describe the particle by the following matter wave:
W (x,t) = sin (27 (—kx — vt )) + sin (270 (= (k + dic) x = (v + dv)t))
where dx << Kand dv << v.
¢) This matter wave has a low- and a high-frequency component. What are the propagation
velocities associated with the low- and the high-frequency components? Specify both the
magnitude and the direction of these propagation velocities. Express your answers in terms

of x, v,dx, and dv.

d) How do the propagation velocities of the matter wave obtained in ¢) compare with the
velocity of the particle?

Your answers need to be well motivated. A correct answer without any motivation will not
receive any credit.
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Midterm Exam 1 February 18,2010
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Problem 2 (30 points) ANSWER IN BOOKLET 1

Consider a photon with an energy E|, travelling in a vacuum. The energy of the photon is larger
than 2 times the rest energy of the electron (E, > 2 m,c?).

a) Can the photon convert all of its energy by creating an electron-positron pair? If you answer
is yes, calculate the total kinetic energy of the electron and the positron. If your answer is no,
show why this process cannot happen in a vacuum.

Now consider a photon with an energy E, producing an electron-positron pair in the vicinity of a

nucleus of mass M. The positron is at rest while the electron has a kinetic energy equal to 2 m,c’

and moves in the same direction as the pair-producing photon was moving.

b) What was the energy of the pair-producing photon?

¢) What fraction of the photon’s linear momentum is transferred to the nucleus?
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Problem 3 (30 points)

ANSWER IN BOOKLET 2

The graph shows the voltage dependence of the current you measure in the Franck-Hertz
experiment you carry out in the advanced laboratory.
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a) Based on the information provided in the Figure, construct an energy-level diagram of the

atoms used in the experiment.

b) What are the energies of the photons that are emitted by the atoms used in the experiment
when the experiment is operated with an accelerating potential of 7 V?

Consider the two-slit experiment
used to observe electron diffraction
shown in the Figure. The condition
for constructive interference is
sin@ =nA/a. The distance between

adjacent maxima on the screen is

dsin@,,, —dsin@, =dA/a.

c) After observing the interference
pattern we install a monitor
system that determines the
position of the electron just
behind the slit screen with an

A

Monitoring
system

1,7

AAARRRRRRRNNNS

7N

Source O

Slit
screen

7
Detecting
screen

accuracy Ay <a/2 so that we can tell through which slit each electron went. Show that this
measurement will wipe out the interference pattern.
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Problem 4 (5 points)

How many times did the Yankees win the world series?

WORI D SERIES
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ANSWER IN BOOKLET 2
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A Mathematical Formulas

A-1 Quadratic Formula

(f ax*+bx+c¢c =20

bt \/b - dac
2a

A-2 Binomial Expansion

n(n2!— 1) 2+ n(n — 13)|(" - 2) o T

n -1 2
x"(l +-"i) = x"(l + nl+n(—"——)-y—,+~~)
X X 2! x°

then x =

(1xx)* = 12 nx +

(x + y)°

A-3 Other Expansions

2 3

x X
et = l+x+a+3-!'+“'
2 2 Xt
<+ = - — —_— -
In{1 + x) x =3 + 3 2 +
. e ¢
sinf = 6 — Tl + 5"
¢ ¢
cos§ =1 — 2 + o
& 2 7
=0+ =+ — < =
tang = 0 BT o + 6| 5
df da’f\ X2
. = + (= + | <] =
(n general:  f(x) f (dx)ox (dx2)0 o +
A—4 Exponents
(an)(am) = ghtm 1 n
P
a")(b") = (ab)"
(o) = @) I
(an) = g"m 1
a? = Va
A-5 Areas and Volumes
Object Surface area Volume
Circle, radius r wr? —_
Sphere, radius r azr? $nr?
Right circular cylinder, radius r, height 4 27r? + 2mrh wrh

Right circular cone, radius 7, height A wr?+ an/rr + ¥ Yarih




FIGURE A-5
FIGURE A-6
First Quadrant Second Quadrant
(0° 10 90°) (90° to 180°)
x>0 x<0
y>0 y>0

> G
ﬁ i i r
1
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™\ o

NPANY;

sin @ =y/r>0 sin 6>0
cos 0 =x/r>0 cos <0

tan @ = y/x>0 tan 6<0

Third Quadrant Fourth Quadrant

(180° to 270°) (270° 10 360°)
x<0 x>0
y<0 y<0

AN

)

r

sin 8<0 sin 8<0

cos <0 cos@>0

tan 6>0 tan <0
FIGURE A-7

A-4 APPENDIX A

A-8 Vectors

Vector addition is covered in Sections 3-2 to 3-5.
Vector multiplication is covered in Sections 3-3, 7-2, and 11-2,

A-9 Trigonometric Functions and Identities

The trigonometric functions are defined as follows (see Fig. A-5, o = side opposil
a = side adjacent, h = hypotenuse. Values are given in Table A-2):

sin@

cosf

80 >In |0

tan @

and recall that
a + o0 = K

1 h

g = — = —

oe siné@ o

secd = 1. k

cos 0 a

sin @ cotf = 1 _ 8
cos tan 6 0
[Pythagorean theorem].

Figure A-6 shows the signs (+ or —) that cosine, sine, and tangent take on for .
angles 6 in the four quadrants (0° to 360°). Note that angles are measured coun-
terclockwise from the x axis as shown; negative angles are measured from below
the x axis, clockwise: for example, —30° = +330°, and so on.

The following are some useful identities among the trigonometric functions:

sin®@ + cos’@

sec’@ — tan’@

sin28 =

cos 26
tan 20

sin(A+ B)
cos(At B)

tan(A+ B)
sin(180° — @)

cos(180° — 8) =
sin(90° — 8) =

cos(90° — 9) =

sin(—8) =

cos(—8)
tan(—8)

1- 8
sinjo = ’/__;:_os_‘ cos}é

sinAt sinB

For any triangle (see Fig. A-7):

1

1, csc?@ — cot’f = 1

2sinf@cosd

cos?® — sin?@ = 2cos?f —1 = 1 — 2sin*0.
2tané '

1 — tan?9

sin Acos B £ cos Asin B

cos Acos B Fsin Asin B
tan A £ tan B

1¥tan Atan B

sin@

—cosé

cos @

sin8

—sin @

= cosé

—tan@

1 + cosé@ tan? 1 - cosé
V 2 V1 + cosé

2 o =
ZSin(A:I: B)cos(A F B)
2 2

. . iy
sina _ sing _ sin [Law of sines]
a b c
¢t = a* + b* — 2abcos?. [Law of cosines]

Values of sine, cosine, tangent are given in Table A-2.




Derivatives: General Rules

(See also Section 2-3.)

a _
dx
d _df _
7e (0] = a—~  la = constant]
d A dg
ar U+ 8] = o+ g
d _df dg
s = g+ pE
d oo dfdy
dx Ll = dy dx [chain rule]
de 1 . dy
dy (ﬂ) if Ir # 0.
dx

Derivatives: Particular Functions

da
i 0  [a = constant]
dx
dirn = lnxu—l
x
d .
7 Sinax = acosax
d .
—cosaxr = —gsinax
dx
d 2
atanax = asec’ax
d | 1
- nax = —
dx x
diem -
x

Indefinite Integrals: General Rules

(See also Section 7-3.)

de=x

fﬂf(.l’) dx ajf(x) dx [a = constant]
[ + g ax

fu dv

[rerax + [s0x) s

wy — J'v du [integration by parts: see also I3



Indefinite Integrals: Particular Functions

(An arbitrary constant can be added to the right side of each equation.)

Ja dx = ax [a = constant] I dx = £
(x* £ az)% a\/x'ta®
fx'"dx - milxmﬂ [m # —1] J xde  _ -1
] (Cta  Vxitad
Isinaxdx = —-—cosax .
a J’ .2 x  sin2ax
sin“axdx = - - ——
1. 2 4a
[cosax dx = g Sinax ax
) Jxe"”dx = =£ > (ax + 1)
Jtan axdx = ;lnlsecaxl max
: Jvze"“dx = - e—,(a"'x2 + 2ax + 2)
J—dx = lnx dx 1 a ¥
x J 5 = —tan”' =
J. 1 2+ a a a
eMdy = =™
dx 1 -
a J 3 = -—ln(x a) [x? > &%
X 2a x +a

i

dx
————= = In(x + \/¥*td?)
J\/x’iaz —-l—ln(a hi x) [x? < a7

d 2a a-x
[——i—— = sin"(i) = —cos"(i) (if x* = a?)
at - x* a a

A Few Definite Integrals

i n! o0 po
Ne=as dy = ~ax? —
L x"e™ ™ dx ey L xPe™" dx o
Al [ *® 1
—ardx - —_ -n.\" i
L e 2 L x%e™*" dx Py
% : 1 % 1-:3:5---(2n = 1)
- = — 20 ,=ax* =
L xe™ dx = e L x¥e ¢ dx = YO "

Integration by Parts

Sometimes a difficult integral can be simplified by carefully choosing the functions u and v in the identity:

J udv = uv - [ vdu. [Integration by parts]
This identity follows from the property of derivatives
51_ (uv) = dv + v du
dx “ d dx

or as differentials: d(uv) = udv + vdu.
For example [xe™* dx can be integrated by choosing # = x and dv = e™*dx in the “integration by parts™ cquation above:

Ixe"‘ dx

(X)(=e™) + Je“‘ dx

=—xe*—e* = —(x+ 1)

SECTIONB-6 A-7



APPENDIX

Useful Integrals*

E.l1 Algebraic Functions

a® + «*
J' dx =Ll x2
ME+ ) 2d \&+

I dx =Lln(ax—b
ax2— b0 2ab \ax+ )

I xds =%ln(a2+x2)

= — —coth"l(ib'x R a’x’ > b2
=- lmh-l(f_") alx? < b2
ab b/
& _2 /T h
==Va+ bx
I\/a-i—bx b
dx
=in(x+ Vx + a?)
«[\/.ac2+a2

(E.1)

(E.2)

(E.3)

(E.4a)

(E.4b)

(E.4c)

(E5)

(E.6)

*This list is confined to those (nontrivial) integrals that arise in the text and in the problems.
Extremely useful compilations are, for example, Pierce and Foster (Pi57) and Dwight (Dw61).
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614 E / USEFUL INTEGRALS
J—’i— AV ——sm (E.7)
Va?— 2

I ln(2\/-\/ax2+bx+c+2ax+b), a>0 (ES8a)

Va:c2 +bx+ ¢
2ax+ b ) {a >0
= -——smh (E.8b)
Va Viac — dac > b
sin™ 2ax+ b {:’<>04ac
= \Vi—43/ |jgaet 8l < VA~ das
(E.8c)
J——L=l\/ax2+ bx + c-iI—L— (E.9)
Vax+bx+c ¢ 2a)Vax?+ bx+ ¢

I & o - smh“( bx + 2¢ ) {c>0 E.108)
Nadtbete Ve x| Vaac - 2/ \|dac> B .

_ 1 bx + 2 c<0

RVl (xlm) {b2>4ac (E-10b)
(2\f\/_2_._- )

‘-—ln +bx+c+—+b c>0

Ve
(E.10c)
N S e 2ax + b 4ac — B dx -
jaxg+bx+0dx— da VBT Ty I\/ax2+bx+c
(E.11)
E.2 Trigonometric Functions
J‘i“a""“g"%s"“" (E.12)
dc 2 atan(x/2) + b .
Ia+bsinx— as_bsm [ \/__—T-] 2> (El4)



E/ USEFUL INTEGRALS
I dx {(a - b tan(x/z)] g
a+ bcos x a* -
. J dx b sinx a [ dx

(a + b cos x)? = (B — @) (a+bcosa) b’— a’z Ja+ bcos x
Itanxdx": —In]cos |
Jtanhxdx=lnéosh:é :

e
a+1

Je“" sin xdx = (a sin x — cos %)

a%

a®+4

Ie"si;x’xdx= (asin"x— 2 sin x cosx+§)

[C retan=ara
~00

E.3 Gamma Functions
I'(n) = wa'"e"’dx
1
= L [In(1/x)]7"tdx

I'(n) = (n— 1), for n= positive integer

nI‘(n) =T(n+1)
1‘(1) = V7
9/
ray=1

1

F(lz) = 0.?06
)

F(lz) = 0.919

615
(E.15)
'(E.i,s)
1

(E.17b)
(E.18a)
(E.le?

(E-18¢)

(E.19a)

(E.19b)

(E.19¢)
(E.20)

(E.21)
(E22)
(E.23)

(E-29)
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E / USEFUL INTEGRALS

(E.25)

(E.26)

(E.27a)

(E.27b)



APPENDIX I

Differential Relations
in Different Coordinate

Systems
F.1 Rectangular Coordinates
U
gradU= VU= Eie‘.a_x‘ (F.1)
divA=V-A= 23’1‘ (F.2)
i 9x;
3A
culA=VXxA= %e,j,-s;f‘e,- (F.3)
32U
ViU = v-vu-zsg (F4)
F.2 Cylindrical Coordinates
Refer to Figures F-1 and F-2.
xy=rcosp, xg=rsing, x3=2 (F.5)
r=Va + 4, ¢=mn-':—:’, 2= xg (F.6)
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F / DIFFERENTIAL RELATIONS IN DIFFERENT COORDINATE SYSTEMS

x

FIGURE F-1

Cylindrical coordinates:
dv=rdrd¢ dz

Plane polar
coordinates:
da=rdrdp

e e
—m e nce—---

o d
4

rdo
/
dr
FIGURE F-2

ds? = d? + 12d¢® + di? )
dv= rdrdpdz (E.8)

., 19 134, a4,
de—ra—r(rA,)+ —+ —

e (L _ %) (oA 04N N4 . 104,
cuﬂA—e,(;g—;)+e¢(;-;)+e,(’_af(rA,) - )(F.ll)

v!,,, = %a—r(,-%l:) + lﬂ + ﬁ

——————— I
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F 7 1)IFFERENTIAL RELATIONS INDIFMENT GOORDINATE‘SYSTEMS o 619

F.3. Sphencal Coordmates _ w N

Refer to Figures F-3 and F—4> S

U= r sm 8cos¢, %S rsmﬂsmda, =r cos 'M()F.I.S)

\/ +x§+x§. o-cos-.l_"’.

4 ae d1’+r2d02+135m29d43* '_,if__; - (R15)
dv—r’smﬂdrdﬂdd:o T (@®16)

E®14)

e, -

FIGUREFS-.

Sphenal c&ordinates:
‘dy=13sinQdrdod -

: \da=r2sin0d8dp o

R RN aw 1L

FIGUREF4.
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620 F / DIFFERENTIAL RELATIONS IN DIFFERENT COORDINATE SYSTEMS
I UL SO
grad¢—V¢l—e,ar+earaa+e¢rsinaa¢ (F17)
A=l oy L8, 1, %
dWA_,.z (rA,)+ prey BO(Aosmo)+rsin0+a¢ (F.18)

1 _ 4
mﬂA—ersnO[ (4 5in 6) 395]

+ e l [QA— - sin 0—(rA¢):| + ey [ (rdg) — %] (F.19)

rsiné| 9

_lof,awy, 1 af a1 &
Vi = r(’a )+r’m089( o ) sin?0 a? (F-20)



Appendix M

THE LAPLACIAN AND
ANGULAR MOMENTUM
OPERATORS IN
SPHERICAL POLAR
COORDINATE

THE LAPLACIAN OPERATOR

The Laplacian operator V2, which enters into the three-dimensional Schroedinger equation,
is defined in rectangular coordinates as
aZ aZ 62
Vie—s+—S+3 M-1
ax? dy? 3z% (M-1)
We show here how to transform the operator into the form it assumes in spherical polar
coordinates, which is

19 ] 1 & 1 @ @
Ve (Pt T+t 57— |sin 0 M-2
2o (' dr) Y ZnT00g?  Psnfa0\ 20 M-2)
The most straightforward way to carry out the transformation is to make repeated applica-
tions of the “chain rule” of partial differentiation. This is a tedious procedure. But the first
term of (M-2) can be obtained, without too much tedium, by considering a case in which the

Laplacian operates on a function ¢ = y(r) of the radial coordinate alone. In this case, the de-
rivatives in the last two terms of (M-2) yield zero, and we have

We shall obtain this expression from the expression

aZ 62 32

vy -2 DT

ox ay dz
which is the Laplacian in rectangular coordinates of (M-1), operating on Y(r). To do this, we
use the relation

r=(x%+y* + 232
connecting the rectangular and the spherical polar coordinates (see Figure 7-2).
We evaluate

6¢_0r6$ x oy xﬁk"_

ox dxor (2+y*+29)2 o v




Appendix M THE LAPLACIAN AND ANGULAR MOMENTUM OPERATORS M-2

and

Py 8 (xap\_ox(1dy 3 f1oy
a?"&(??)'a?(?aT)“‘EE(FE)
Py 1oy ol
ax_f:;“‘aa—r(;a—,)
Py 1oy x*afldy
5?“:5*75(;5:)

Similarly, the y and z derivatives yield
and

Adding these three expressions, we obtain
38 (xE+y 4z a1y
2 -_— e — ————— — — ——
v ror + r or\r or
or
3oy é 1oy
PN AT a4
Vi ror +r6r(r ar)

Now note that the expression we have obtained expands to

3oy 10 10%
2, 0¥ _toy 0¥
V""rar“( rzt'il"-*.ré)r2
or
209 o
2, W OV
VY =Ta

Also note that the first term of (M-2), that is
10 oy
2, L0 f 20¥
v !p_rzar(r ar)

expands to
1 (. oy 0%y
2 _ ik 2 7
v¢_r2(zr6r+r arz)
or
20y oy
2 e e— ——
Vl{l_r(’ir-*-ar2

Comparison shows that the expression we have obtained is identical to the first term of (M-2).
The second and third terms can be obtained by taking ¥ = y(g), and then taking ¢ = (0).

THE ANGULAR MOMENTUM OPERATORS

In rectangular coordinates, the operators for the three components of orbital angular momen-
tum are

) 0
L.Vop = —ih (Z -a—x —-X 5;) (M-3)




When transformed to spherical polar coordinates, these operators asssume the forms

o f é a
L= m(sm ? 5 + cot O cos ¢ 5;)
L. =ih| —cos _3_ + cot 0 sin 9 (M-4)
Yop = P 20 ? EP)
0
Lzop = —lh%

We shall show that these are equivalent, taking L. as the simplest example. To do this, we
must use the relations
x=rsin0cos ¢
y=rsin0sin g (M-5)
z=rcos0
connecting the rectangular and spherical polar coordinates (see Figure 7-2).
It is easiest if we start by applying the chain rule to dy/de, and obtain
o _owos oy W

de —&_56 dy 0p 0z Op
From (M-5), we have

ox . .
— = —rsinfsing = -y
dp
0
—y=rsin0coscp=x
oo
0z _
do

Thus
w__ W
oy ox dy

As an operator equation, this reads
7 0 7
- Ty
which verifies the equivalence of the two forms of L,,, quoted in (M-3) and (M-4). Similar

calculations will do the same for L, and L, .
In rectangular coordinates, the operator for the square of the magnitude of the orbital an-

gular momentum is
+ L2

+ LI+ L2, (M-6)
By squaring L, Ly,,. and L:, and adding, it is found after some manipulation of the

sinusoidal functions that

1 2 G 1 &
L2 = W ——=sinb0 |+ -
op = 1 [sin 6 30 (‘"‘ ao) tno a¢2] M-7)
Note the relation between (M-7) and the last two terms in (M-2). It forms the basis of an alter-
native way of obtaining those terms, which can be found in mathematical reference books.

Li =L}

Xop

PROBLEM
1. By using the techniques of Appendix M, show that L, has the form stated in (7-37).
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