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Chapter	
  10:	
  Multi-­‐Electron	
  Atoms	
  –	
  Optical	
  Excitations	
  
 
To describe the energy levels in multi-electron atoms, we need to include all forces.  The 
strongest forces are the forces we already discussed in Chapter 9: 

• The forces between the electrons and the nucleus. 
• The forces between the electrons. 

However, a more accurate understanding of the energy levels in multi-electron atoms also 
requires the inclusion of weaker forces: 

• The forces due to the coupling between orbital angular momenta. 
• The forces due to the coupling between spin angular momenta (the exchange force). 
• The forces due to the coupling between spring and orbital angular moment. 
• The forces due to external magnetic fields (the Zeeman effect). 

The energy levels in multi-electron atoms can be probed using: 
• Optical spectra: transitions associated with weakly bound outer electrons (small 

energies). 
• X-ray spectra: transitions associated with tightly bound outer electrons (large energies). 

 
To start our study of optical excitations, let us first consider the alkali atoms.  The energy levels 
of some states in the lightest alkali atoms are indicated in the Figure at the bottom of the page.  
In our discussion of alkali atoms we make the following assumptions: 

• We ignore the core of filled sub-
shells in the atom.  These sub-shells 
have spherical symmetry and are 
difficult to excite. 

• The electronic structure for the 
Alkali atoms shown in the Figure is 
as follows: 

o For H: 1 electron.  The 
electron is located in a 1s1 
configuration.  The outer-
most electron is in the 1s 
state. 

o For Li: 3 electrons.  The 
electrons are located in a 
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1s22s1 configuration.  The outer-most electron is in the 2s state. 
o For Na: 11 electrons.  The electrons are located in a 1s22s22p63s1 configuration.  

The outer-most electron is in the 3s state. 
• The highest filled sub-shell in the Alkali atoms, except H and Li, is the p shell. 
• The outermost electron in the Alkali atoms is located in an s shell.  This electron is called 

the optical electron. 
Based on detailed studies of the optical spectra of Alkali atoms, the following conclusions can be 
drawn: 

• The spectra show fine structure.  All levels are split, except the   = 0  levels. 
• The splitting is related to the spin-orbit coupling (see Chapter 8) which introduces an 

energy shift equal to 
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If   = 0 , j = s and the energy shift is 0. 
If   ≠ 0 , there are two values of the energy shift: 
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Looking at the calculated energy shift we make the following observations: 

1. The splitting of the original energy level is asymmetric. 
2. The splitting is proportional to (1/r)(dV/dr).  Since both (1/r) and (dV/dr) 

become large when r becomes small, the expectation value of the energy shift 
will be dominated by the behavior of the wavefunctions at small r. 

3. Since (dV/dr) at small r is proportional to Z, we expect that the energy shift 
increases when Z increases.  This is indeed observed, as can be seen based on 
the information contained in the following table: 
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Atom Spin-Orbit Splitting Z
ZLi

ΔE
ΔELi

3Li 0.42 ×10−4  eV 1 1
11Na 21×10−4  eV 3.7 50
19K 72 ×10−4  eV 6.3 171

37Rb 295 ×10−4  eV 12.3 702
55Cr 687 ×10−4  eV 18.3 1636

 

 
The structure of atoms with several optical electrons is more complicated.  The energy levels of 
such atoms can be determined using the Hartree approximation which shows that the energy 
level of each electron in the outer shell is determined by two quantum numbers n and   .  Since 
there are  2 +1( )  values of  m  and 2 values of ms, there are  2 2 +1( )  combinations that have 
the same energy.  However, some of the degeneracy is removed by considering the effect of the 
following interactions: 

• The residual Coulomb interactions: this is a correction to the average affect of the 
Coulomb interactions due to all other electrons which has been included in the Hartree 
calculations. 

• Spin-orbit interactions. 
Let us first consider the residual Coulomb interactions: 

• This interaction is not relevant in Alkali atoms since the average potential used in the 
Hartree calculations is a good approximation due to the spherical nature of the closed 
(sub)shells. 

• The interaction depends on the distance between the electrons in the outer shell.  First 
consider atoms with two optical electrons.  These two electrons can be in either a triplet 
or a singlet spin state.  Since the average distance between two electrons in the triplet 
state is larger than the average distance between two electrons in the singlet state, the 
repulsion between these electrons will be less when they are in the triplet state, 

 S12 = 2 , compared to the singlet state, S12 = 0 .  We thus conclude that the energy shift 
due to residual Coulomb interactions is lower when 
S12  is larger.  An example of the shift associated with 
spin is shown in the level scheme on Page 4. 

• The angular momentum of the optical electrons also 
influences the energy of the states.  Consider the 
classical picture of an atom with two optical electrons, 
shown in the Figure on the right.  The Coulomb 
repulsion energy is minimized when the electrons are 
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on opposite sides of the orbit.  In this case, the angular momentum associated with each 
electron is pointing in the same direction and the total angular momentum of this pair is 
maximized.  This model leads to the following conclusion: states with maximum L12 have 
the lowest energy.  The resulting shift in energy levels is shown in the following level 
scheme where a state with  12 = 1  have the highest energy and a state with  12 = 3  has 
the lowest energy. 

 

 
Note: the spectroscopic notation used in this level scheme is 2S+1LJ. 

 
Now consider the spin-orbit interaction: 

• We already saw that the energy shift due to the spin-orbit interaction is given by the 
following expression: 
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For a given    and s, the energy shift is lower when the total angular momentum quantum 
number j is lower.  This is the reason that the states in the lower right-hand corner of the 
level scheme shown above split according to this rule.  For example, the order of the 
lowest three states is j = 2, 3, 4 (order of increasing energy).  The spin-orbit effect does 
not change the energy of the states shown in the top-right corner of the Figure since s = 0 
and  j =  . 

• If there are more than two optical electrons, the calculation of the angular momenta 
becomes more complicated: 
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
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J1 +
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J2 +
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J3 + ...  

 
• When Z increases, the spin-orbit interaction increases and may exceed the Coulomb 

repulsion corrections. 
• It is critical to understand the vector addition of the angular momenta of two electrons.  

Examining (and understanding) the vector additional diagrams shown in the following 
Figure is very important. 

 
 

• The separation energy between energy levels of a multiplet depends on j: 
 

 

ε j+1( )→ j = k j +1( ) j + 2( ) −   +1( ) − s s +1( ){ } − k j j +1( ) −   +1( ) − s s +1( ){ } =
= k j2 + 3 j + 2( ) − j2 + j( ){ } = 2k j +1( )

 

 
This prediction is called the Lande interval rule and can be used to determine j. 
Example: consider the following the following levels that are part of a multiplet: 
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j + 2 ______________
ε2

j +1 ______________
j ______________ ε1

 

 
The Lande rule can be used to relate the energy differences to j; 
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The measured energy levels are in good agreement with the Lande rule. 

 
As an example, consider the special case of carbon.  Carbon has 6 electrons in the following 
configuration: 1s2 2s2 2p2.  The optical properties of carbon are determined by the properties of 
the 2p2 electrons.  These electrons have the following quantum numbers: 

 

 

n1 = 2, 1 = 1, s1 =
1
2

n2 = 2, 2 = 1, s2 =
1
2

 

 
The total spin and the total orbital angular momentum of these two electrons can take on the 
following values: 

 
S12 = 0,1
L12 = 0,1,2

 

 
The total spin can thus have two possible values: 

o S12 = 0 .  The total angular momentum of the two electrons can take on the following 
values: 

 
if L12 = 0 : J12 = 0
if L12 = 1 : J12 = 1
if L12 = 2 : J12 = 2

 

 
o S12 = 1. The total angular momentum of the two electrons can take on the following 

values: 
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if L12 = 0 : J12 = 1
if L12 = 1 : J12 = 0,1,2
if L12 = 2 : J12 = 1,2,3

 

 
In our study of possible states in carbon we have not considered the impact of the exclusion 
principle.  The two electrons in the 2p state have the same n and    and in order to satisfy the 
exclusion principle, they must have different  m  or ms .  Consider what happens when the 
electrons are in a spin triplet state.  If they have the same ms  they must have different  m .  But, 
this prevents the electrons from being in the L12 =2 state.  To look at which states are possible we 
need to construct a table that lists all possible combinations of m.  Consider two electrons in the 
p shell.  The following table lists all possible combinations of the magnetic quantum numbers 
associated with these two electrons. 

 

 m1  ms1
  m2  ms2

  m12  ms12
 mj12

 

1 +½ 1 -½ 2 0 2 
  0 +½ 1 1 2 
  0 -½ 1 0 1 
  -1 +½ 0 1 1 
  -1 -½ 0 0 0 
1 -½ 0 +½ 1 0 1 
  0 -½ 1 -1 0 
  -1 +½ 0 0 0 
  -1 -½ 0 -1 -1 
0 +½ 0 -½ 0 0 0 
  -1 +½ -1 1 0 
  -1 -½ -1 0 -1 
0 -½ -1 +½ -1 0 -1 
  -1 -½ -1 -1 -2 

-1 +½ -1 -½ -2 0 -2 
 

As we can see from this table, a total of 15 possible configurations exist for these two electrons.  
Based on the information in the table we can draw the following conclusions: 

• Since mj can take on values between +2 and -2, the total angular momentum quantum 
number j cannot be 3.  This is a consequence of the Pauli exclusion principle.  We thus do 
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not expect to see the 3D3 level in carbon.  But, we know that there must be D states since 
there are combinations with  m12 = 2  in the table.  Since the 3D1 and 3D2 states have 
combinations for which the electrons would have the same quantum numbers, we can 
also exclude these states.  The only possible D state would thus be the 1D2 state.  This 
state has j = 2 and thus account for (2j + 1) = 5 combinations. 

• Now consider P states.  If the electrons are in a spin triplet state (s = 1) the following 
configurations exist: 

o j = 2:  mj = -2, -1, 0, 1, 2. Possible configurations: 5 3P2 
o j = 1:  mj = -1, 0, 1.  Possible configurations: 3 3P1 
o j = 0:  mj = 0.   Possible configurations: 1 3P0 

The total number of configurations is 9. 
The 1P1 state is excluded on the basis of the Pauli exclusion principle (the total 
wavefunction has to be asymmetric and the 1P1 state would be symmetric: an asymmetric 
spin wavefunction and an asymmetric spatial wavefunction). 

• Combining the two previous sets of configurations, we see that we already account for 14 
of the 15 configurations.  In order to ensure that we account for all states, it is often 
convenient to convert the table of m values to the following summary table: 

 

mj # 1D2 3P0,1,2 
Not 

Assigned 
2 2 1 1 0 
1 3 1 2 0 
0 5 1 3 1 
-1 3 1 2 0 
-2 2 1 1 0 

 
Since we are left to assign one state with mj = 0, we conclude that this must be a j = 0 
state.  This state must be a 1S0 state. 

 
We thus conclude that the two p electrons can occupy the following states: 1S0, 3P0,1,2, and 1D2.  In 
order to make predictions about the energy ranking of these states, we make the following 
observations: 

• Triplet spin states will have a lower energy that singlet spin states.  The states with the 
lowest energies will thus be the 3P0,1,2 states. 
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• States with a larger 
total orbital angular 
momentum will 
have a lower energy.  
This leads us to 
conclude the 
ordering of the 1S0 
and the 1D2 spin 
singlet states in 
terms of energy is as 
follows: the 1D2 
state has the lowest 
energy. 

The predictions made on the 
basis of the rules are in 
good agreement with the 
observed ordering of levels in the carbon atom, as shown in the Figure above. 
 
For other configurations where one optical electron is promoted to a different sub shell,. The 
Pauli exclusion principle is satisfied by having the n number of the two electrons be different.  
As a consequence, we observe that there are 10 possible states for a 2p 3p configuration: 

 
3D1,2,3 excluded for 2p 2p
3P1,2,3

3S1 excluded for 2p 2p
1D2
1P1 excluded for 2p 2p
1S0

 

 
The spectrum of light emitted when optical electrons make transitions indicates that not all 
possible transitions are allowed.  The following transition rules are obeyed in the observed 
transitions: 

1. Transitions involve the change of n and    number of one electron.  Transitions between 
states that require the change in quantum numbers of more than one electron are 
extremely unlikely to be observed. 
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2. The change in    of the electron involved in the transition satisfies the following relation: 
 Δ = ±1 . 

3. Changes in  s12 ,12 , j12  satisfy the following rules: 
 

 

Δs12 = 0 Spin can change, but the probability is very low.
Δ12 = 0,±1
Δj12 = 0,±1 except when j12 = 0 which requires Δj12 = 0

 

 
 
When an atom is placed in an external magnetic field, its energy levels may be split due to the 
interaction between the atom’s dipole moment and the external magnetic field.  This effect was 
first observed by the Dutchman Pieter Zeeman and is called the Zeeman effect.  The magnitude 
of the splitting is proportional to the magnitude of the external magnetic field: 

 

 ΔE = −

µ ⋅

B  

 
The magnetic moment is determine by the properties of the optical electrons: 
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Note that since  


Jtot =


Ltot +


Stot  the total angular momentum is not parallel to the magnetic 

moment. 
First consider what happens when  


Stot = 0 .  In this case: 

•  

Jtot  is anti parallel to  

µ . 
• The splitting is proportional to  


µ ⋅

B .  If we choose the z axis to be parallel to the 

magnetic field then  

µ ⋅

B  can be written as µzB .  The z component of the magnetic 

moment is equal to 
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• For a given total angular momentum, there will be (2j + 1) different energy shifts.  The 
external magnetic field will thus produce a regular spaced pattern of energy levels. 

• The splitting that occurs when the total spin is 0 is called normal Zeeman splitting (see 
Figure below).  By counting the number of lines, we can determine the value of j.  For the 
example shown in the Figure, j = 1. 

 

 
 
When the total spin of the optical electrons is not equal to zero the splitting becomes more 
complex.  We note that: 

•  

J ,  

L , and  


S  lie in one plane. 

•  

S  will precess due to the spin-orbit coupling.  If there is no external field, the total 
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angular momentum will remain fixed in space, and a precession of the total spin about the 
total orbital angular momentum must be accompanied by a precession of the total orbital 
angular momentum.  The plane defined by  


J ,  

L , and  


S  will thus precess about  


J . 

• The total magnetic moment lies in the plane defined by  

J ,  

L , and  


S  but it is not anti-

parallel to  

J . 

• Due to the precession of  

L  and  


S  about  


J , the magnetic moment will precess about  


J . 

• The energy shift due to the external field depends on  −

µ ⋅

B = −µBB .  The energy shift is 

complicated since the magnetic moment precesses about  

J  and  


J  precesses about  


B .  N 

general, the internal magnetic field is very much larger than the external magnetic field, 
and as consequence, the precession rate of the magnetic moment about  


J  will be much 

higher than the precession rate of  

J  about  


B .  The precession rate of  


J  about  


B  of 

depends on the projection of the magnetic moment onto  

J .  This projection is equal to  
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The component of this magnetic moment parallel to the z axis will define the energy shift 
associated with the external magnetic field.  The component of µJ along the magnetic 
field is equal to 

 

 
µB = µJ
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
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The resulting energy shift is equal to 

 

 
ΔE = −
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where 
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g =

3 j j +1( ) + s s +1( ) −   +1( )
2 j j +1( ) = 1+

j j +1( ) + s s +1( ) −   +1( )
2 j j +1( )  

 
The factor g is called the Lande factor. 

• Different levels will have different Lande factors and the splitting of different levels will 
thus be different. 

 
Transitions are allowed when 

 
Δmj = 0,±1  

 
However, if Δj = 0 , transitions from mj = 0  to mj = 0  are not allowed.  Since the splitting 
depends on mj , the transitions are sensitive to j.  Consider the 
following examples: 

•  j = 1/2 to j = 1/2. 
Each level splits in two: mj = ½ and mj = - ½.  Applying the 
selection rule that Δmj = 0,±1  we recognize that there are 4 
possible transitions. 

• j = 3/2 to j = 1/2.  The upper level splits into 4 levels; the bottom level splits into 2 levels.  
However, due to the selection rule Δmj = 0,±1 , not all transitions will occur.  For 
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example, a transition from mj = 3/2 to mj = -1/2 is 
not allowed.  The total number of transitions in this 
case is 6. 

 
 
 


