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In this Chapter we continue our discussion of one-electron atoms.  The energy levels of the states 
in the atom are shifted when the atom is placed in a magnetic field.  The energy shift depends on 
the dipole moment of the electron. 
 
Let us first examine a classical picture of the 
electron in a circular orbit of radius r.  If the 
electron is moving with a velocity v, the motion 
of the electron represents a current I where 

 

I = dq
dt

=
e
T

=
e
2πr
v

⎛
⎝⎜

⎞
⎠⎟
=

ev
2πr

 

 
The classical dipole moment associated with this 
current is equal to 

 

 
µ = IA =

ev
2πr

⎛
⎝⎜

⎞
⎠⎟
πr2( ) = 12 evr  

 
The circulating current will create a non-
uniform magnetic field that is schematically indicated in the Figure. 
The angular momentum of the electron is given by 

 
L = mv( )r  

 
The dipole moment of the electron can thus be rewritten as 

 

 
µ =

1
2
evr = 1

2
e
m
mvr = 1

2
e
m
L  

 
We thus conclude that the ratio of the dipole moment of the electron and its angular momentum 
is constant: 

 

 

µ
L

=
1
2
e
m

= constant  

 
This ratio is commonly rewritten in terms of the Bohr magneton: 
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µ
L

=
gµb


 

 
where 

 

 
µb =

e
2m

(Bohr magneton)  

 
and 

 
 g = 1 (orbital g factor)  

 
The dipole moment has a direction opposite to the direction of the angular momentum.  This is a 
result of the negative charge of the electron and the fact that the current is thus directed in a 
direction opposite to the direction of motion of the electron.  The expression of the dipole 
moment in vector notation is 

 

 


µ = −

gµb




L  

 
Applying what we learned from quantum mechanics we obtain the following expressions for the 
dipole moment of the electron: 

 

 


µ =

gµb




L =

gµb


  +1( )( ) = gµb   +1( )  

 

 


µ,z = −

gµb


Lz = −

gµb


m( ) = −gµbm  

 
When the atom is put in an external magnetic field, a torque will be exerted on the electron.  The 
torque depends on the angle between the direction of the dipole moment and the direction of the 
magnetic field: 

 

 

τ =

µ ×


B  

 
The potential energy of the dipole depends on its orientation with respect to the external 
magnetic field.  The potential energy of the dipole is given by the following expression: 

 

 U = −

µ ⋅

B  

 



Physics 237  Notes Chapter 8 

   
March 21, 2010  Page 3 of 13 

In order to reduce their potential energy, the dipoles will try to align themselves with the external 
field.  In order to change their orientation, the dipoles must be able to dissipate the energy that is 
released when their orientation changes.  If there is no mechanism for the dipoles to dissipate this 
energy, they will not be able to change their orientation, and instead will start to precess around 
the direction of the external magnetic field.  The precession frequency is equal to 

 

 


ω =

gµ



B  

 
This equation is obtained from our classical description of the motion of the electron, but the 
same result is obtained from a proper quantum-mechanical treatment. 
 
If the external magnetic field is not uniform, the effect 
of the field on the atom/electron is more complicated.  
Consider the motion of an electron in the field 
indicated in the Figure on the right.  The magnetic 
force exerted on the electron is directed as indicated in 
the Figure.  The minus sign in front of the cross product 
between the velocity and the magnetic field is due to 
the negative charge of the electron.  If we assume that 
the magnitude of the magnetic field is constant around the orbit and only the direction of the 
magnetic field changes around the orbit, we conclude: 

• The components of the force in the plane of the orbit cancel around the orbit.  There is 
thus no net translation in the orbital plane. 

• The components of the force in the direction perpendicular to the orbital plane do not 
cancel around the orbit if the field is non uniform and there will be a net force in the 
direction of the magnetic field.  Note: if the field is uniform, the net force around the 
orbit in this direction is zero.  The vertical component of the average force on the electron 
is equal to 

 

 


Fz =

∂Bz
∂z

µ,z  

 
The electron thus will feel: 

• a torque, which leads to precession. 
• a force, which leads to a deflection. 
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Both the torque and the force on the electron are a function of the dipole moment.  Since the 
dipole moment depends on the angular momentum of the electron, we expect that both the torque 
and the force are quantized. 

 

 
 

The predictions made by the theory we have discussed so far were studied in the Stern-Gerlach 
experiment, shown schematically in the Figure above.  Neutral atoms enter a region with a non-
uniform magnetic field, are deflected as a result of the magnetic force, and are detected on a 
detector plate at the exit of the magnet.  Since the net force in the z direction depends on the z 
component of the dipole moment we expect that the force on an electron in an orbit with an 
azimuthal quantum number    to have  2 +1  components since the dipole moment will have 
 2 +1  possible values: 

 

 µ,z = −gµbm where m = −,− +1,...,0,..., −1,  
 

Since    is an integer, the number of components is odd, and one component will not be 
deflected since  m = 0 . 
The first measurements were carried out with neutral Ag 
atoms.  The observations, shown in the Figure on the right, 
disagreed with the predictions based on the quantum 
mechanical properties of the angular momentum.  The main 
differences are: 

• The number of discrete components observed is 2: even, not odd. 
• There is no component that is not deflected. 

The experiment was repeated with Hydrogen atoms in their ground state.  In this state, the 
electrons are in an   = 0  orbit and no deflection of the beam of Hydrogen atoms was expected.  
However, the observations showed that the beam was separated into two components. 
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The only way to reconcile these observations was to assume that the electron has a built-in dipole 
moment, not associated with its orbital motion, but with its spin.  The spin state of the electron is 
specified by a quantum number s which has properties similar to the quantum number    
associated with the orbital motion: 

•  S = s s +1( )  
•  Sz = ms where ms = −s,−s +1,..., s −1, s  

The dipole moment associated with the spin of the electron has the following properties: 

• 
 


µs = −

gsµb




S  

• µs,z = −gsµbms  

The factor gs is called the spin g factor. 
The observation that the Hydrogen beam splits into two components requires that 2s+1 = 2 or s = 
½.  The amount of deflection can be used to determine that the product gsms  must be equal to 
±1.  This, combined with the possible values of ms tells us that the spin g factor must be equal to 
2. 
The fact that the electron carries spin has the following consequences: 

• Since the electron has two spin states, the number of electrons that can reside in a state 
specified by n,   , and m is doubled.  Electrons have to satisfy the Pauli exclusion 
principle for Fermions and two electrons can not occupy a state with the same quantum 
numbers. 

• The electron spin interacts with the magnetic field generated by the nucleus, and this 
interaction shifts the energy levels.  This interaction is called the spin-orbit interaction. 

To estimate the shift in the energy levels of the 
states in the atom due to the spin-orbit interaction, 
we use a classical model to estimate the magnitude 
of the magnetic field seen by the electron in the 
Hydrogen atom.  From the electrons point of view, 
the proton is moving in a circular orbit of radius r.  
The magnetic field generated by the orbiting proton at the location of the electron is equal to 

 

 


B = −

Zeµ0
4π

v × r̂
r2

= − ε0µ0( ) v × Ze
4πε0

r̂
r2

= −
1
c2
v ×

E  

 
The shift in the energy of the electron due to the interaction of its dipole moment with this 
magnetic field is equal to 
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ΔE = −


µs ⋅

B =

gsµb




S ⋅

B( )  

 
Note that this energy shift is the energy shift in the rest frame of the electron.  When we 
transform to the reference frame in which the proton is at rest, the energy shift is equal to 

 

 
ΔE =

1
2
gsµb




S ⋅

B( ) = µb




S ⋅

B( )  

 
Details on this transformation can be found in Appendix O of the textbook. 
The magnetic field seen by the electron can be rewritten in the following way: 

 

 


B =

1
ec2
v × −e


E( ) = 1

emc2
mv( ) ×


F =

1
emc2

p × −
dV
dr

r
r

⎛
⎝⎜

⎞
⎠⎟
= −

1
emc2

1
r
dV
dr
p × r = 1

emc2
1
r
dV
dr

L  

 
The energy shift of the electron is thus equal to 

 

 
ΔE =

µb




S ⋅

B( ) = µb


1

emc2
1
r
dV
dr

S ⋅

L( ) =

e
2m

⎛
⎝⎜

⎞
⎠⎟


1

emc2
1
r
dV
dr

S ⋅

L( ) = 1

2m2c2
1
r
dV
dr

S ⋅

L( )  

 
We can express the energy shift in terms of 
the total angular momentum of the 
electron.  The total angular momentum of the 
electron is the sum of the orbital angular 
momentum of the electron and the angular 
momentum associated with the spin: 

 
 

J =

L +

S  

 
The total angular momentum is quantized in 
the same way as L and S are quantized: 

•  J = j j +1( )  
•  Jz = mj where mj = − j,− j +1,..., j −1, j  

The component of the projection of the total angular momentum along the z axis is the sum of 
the projections of the orbital and spin angular momenta along the z axis.  The quantum number 
associated with this projection is equal to 
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mj = m + ms = m ±

1
2

 

 
The maximum projection of the total angular momentum along the z axis thus corresponds to a 
quantum number 

 

 
mj ,max = m,max +

1
2
=  +

1
2

⇒ jmax =  +
1
2

 

 
If the orbital angular momentum is 0 (  = 0 ) the total angular momentum is equal to the spin of 
the electron and j = ½.  In all other cases, there are two possible values of j: 

 

 
j =  + 1

2
and j =  − 1

2
 

 
Using basic geometry we can relate the limits of the total angular momentum to the orbital and 
spin angular momenta (see Figure at the bottom of the page): 

 

 


L −


S ≤


J ≤


L +


S  

 
The relation 

 

 

J ≤


L +


S  

 
was used to determine the maximum quantum number associated with the total angular 
momentum, jmax.  The minimum quantum number, jmin, is obtained from the relation 

 

 


L −


S ≤


J  

 
This relation can be rewritten as 

 

 
  +1( ) − s s +1( ) ≤ j j +1( )  
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Since each side is positive, we can square each side without changing the relative relation: 
 

   +1( ) + s s +1( ) − 2   +1( ) s s +1( ) ≤ j j +1( )  
 

Since the electron has a spin ½ we can rewrite this relation as 
 

 
  +1( ) + 3

4
− 3  +1( ) = 2 +  + 3

4
− 3  +1( ) ≤ j j +1( )  

 
Now consider possible values of   : 

• Consider 
 
j =  − 1

2
.  Substituting this value of j in the inequality we obtain 

 

 

2 +  +
3
4
− 3  +1( ) ≤  − 1

2
⎛
⎝⎜

⎞
⎠⎟
 +

1
2

⎛
⎝⎜

⎞
⎠⎟
= 2 −

1
4

⇒

 +1 ≤ 3  +1( ) ⇒  +1( )2 ≤ 3  +1( ) ⇒

 +1 ≤ 3 ⇒ 1 ≤ 2 ⇒
1
2
≤  	
  

 
This inequality is satisfied for all    as long as   ≠ 0 . 

• Consider 
 
j =  − 3

2
.  Substituting this value of j in the inequality we obtain 

 

 

2 +  +
3
4
− 3  +1( ) ≤  − 3

2
⎛
⎝⎜

⎞
⎠⎟
 −

1
2

⎛
⎝⎜

⎞
⎠⎟
= 2 − 2 + 3

4
⇒

3 ≤ 3  +1( ) ⇒ 92 ≤ 32 + 3 ⇒ 62 ≤ 3 ⇒

6 ≤ 3 ⇒  ≤
1
2

 

 
This inequality will never be satisfied if we assume that   ≠ 0 . 

• Any smaller value of j will lead to inequalities that are never satisfied and we thus 

conclude that 
 
j =  − 1

2  
is the minimum value of j. 
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The energy shift due to the spin orbit interaction  
 

 
ΔE =

1
2m2c2

1
r
dV
dr

S ⋅

L( )  

 
can be expressed in terms of the quantum parameters specifying the state by observing that 

 

 


S ⋅

L =

1
2

L +

S( ) ⋅ L +


S( ) − L ⋅ L −


S ⋅

S( ) = 12 j j +1( ) −   +1( ) − s s +1( )( )2  

 
The energy shift is thus equal to 

 

 
ΔE =

2

4m2c2
j j +1( ) −   +1( ) − s s +1( )( ){ }1r

dV
dr

 

 
Since the potential V for the Hydrogen atom is well known, 

 

V r( ) = 1
4πε0

e2

r
, 

 
the expectation value of  

 
1
r
dV
dr

 

 
can be determined for the various eigenfunctions of the Hydrogen atom.  The energies of the 
states in the Hydrogen atom, after applying the energy correction, will now not only depend on 
the principle quantum number n but also on the total angular momentum quantum number j: 

 

 

E = −
µe4

4πε0( )2 22n2( ) 1+
α 2

n
1

j + 1
2

−
3
4n

⎛

⎝

⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟

⎧

⎨
⎪

⎩
⎪

⎫

⎬
⎪

⎭
⎪

 

 
The energy levels obtained with this expression are shown in the level scheme on the next page. 
 
Once we have determined the energy levels/states in an atom, we can start looking at the 
probability to observe transitions between states.  Consider an atom that has two states: the initial 
state with an energy Ei and the final state with an energy Ef.  The time dependence of the 
wavefunction describing these states is governed by the energy of these states: 
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Ψ i
r ,t( ) =ψ i

r( )e−iEi t /

Ψ f
r ,t( ) =ψ f

r( )e−iE f t /

 

 
The probability density distribution of the atom in a specific state is independent of time: 

 

 
Ψ i

∗ r ,t( )Ψ i
r ,t( ) = ψ i

r( )e−iEi t /( )∗ ψ i
r( )e−iEi t /( ) = ψ i

∗ r( )e+iEi t /( ) ψ i
r( )e−iEi t /( ) =ψ i

∗ r( )ψ i
r( )  

 
We thus conclude that the atom will remain in a given state if it is in a pure eigenstate. 
In order to look at transitions between states, we can start to look at the emission of radiation as a 
result of oscillating charged particles.  In classical E&M you should have learned that an 
oscillating electric dipole, with a dipole moment p and oscillation frequency ν, radiates energy 
with an average rate of  

 

R =
4π 3ν 4

3ε0c
3 p

2  
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The rate of photon emission is thus equal to 
 

 
R =

R
ν

=
4π 3ν 3

3ε0c
3 p

2  

 
For a single atom, R is the atomic transition rate.  In order to look at transitions, we must 
evaluate the expectation value of the dipole moment. 
The electric dipole moment associated with the motion of the electron is equal to 

 
 
p = −er  

 
The expectation value of p is thus proportional to the expectation value of r.  Consider the 
expectation value of p between a given initial state and final state: 

 

 

Ψ f
r ,t( ) r Ψ i

r ,t( ) = ψ f
r( ) r ψ i

r( ) = ψ f
r( )

r sinθ cosϕ
r sinθ sinϕ
r cosθ

⎛

⎝

⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟
ψ i
r( ) =

= ψ f
∗

r sinθ cosϕ
r sinθ sinϕ
r cosθ

⎛

⎝

⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟
ψ i r

2 sinθ drdθdϕ( )
0

2π

∫
0

π

∫
0

∞

∫

 

 
Let us first consider the integration over the azimuthal angle.  Since the azimuthal angle 
dependence of the wavefunctions is well established we can carry out this integration: 

 

e−im fϕ
cosϕ
sinϕ
1

⎛

⎝

⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟
eimiϕ dϕ

0

2π

∫ =

1
2
eiϕ + e−iϕ( )

1
2i

eiϕ − e−iϕ( )
1

⎛

⎝

⎜
⎜
⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟
⎟
⎟

ei mi −mf( )ϕ dϕ
0

2π

∫ =

=
1
2

1
−i
0

⎛

⎝

⎜
⎜

⎞

⎠

⎟
⎟

ei mi −mf +1( )ϕ dϕ
0

2π

∫
⎡

⎣

⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥
+
1
2

1
i
0

⎛

⎝

⎜
⎜

⎞

⎠

⎟
⎟

ei mi −mf −1( )ϕ dϕ
0

2π

∫
⎡

⎣

⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥
+

+
0
0
1

⎛

⎝

⎜
⎜

⎞

⎠

⎟
⎟

ei mi −mf( )ϕ dϕ
0

2π

∫
⎡

⎣

⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥
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The first integral is only non-zero when mi − mf +1 = 0 ; the second integral is only non-zero 
when mi − mf −1 = 0 ; the third integral is only non-zero when mi − mf = 0 .  This leads to the 
first selection rule for transitions: Δm = mf − mi = 0,±1 . 
A second set of selection rules is based on the angular momentum quantum number.  The 
transition probability depends on the expectation value of the dipole moment of the electron.  
The magnitude of the amplitude of the dipole moment depends on the initial state and the final 
state and is equal to the matrix element of the electric dipole moment pfi between these states 
where 

 

 
pfi ≡ ψ f e

r ψ i = ψ f
∗erψ i dτ∫  

 
A proper quantum mechanical treatment shows that the transition rate between the initial and 
final state is equal to 

 

 
R =

16π 3ν 3

3ε0c
3 pfi

2  

 
Using the parity of the wavefunction we can make very specific production on the conditions 
under which the matrix element is non-zero.  The parity of the wavefunction tells us what 
happens to the value of the 
wavefunction when we carry out the 
following coordinate transformation 
(shown schematically in the Figure 
on the right): 

 
r→ r
θ → π −θ
ϕ → π +ϕ

 

 
A wavefunction has even parity when it does not change under this coordinate transformation.  
A wavefunction has odd parity when the wavefunction changes by (-1) under this 
transformation.  The position vector r has odd parity.  When we examine the solutions of the 
Schrödinger equation for the one-electron atom we notice that the parity of the wavefunctions 
depends on    as  −1( ) .  In order for the matrix element to be non-zero, the parity of its argument 
must be even.  This requires that 
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 −1( ) f −1( ) −1( )i = +1 ⇒ −1( )i + f = −1( ) ⇒  i +  f = odd  
 

We thus conclude that in order to a transition to have a non-zero transition probability, it must 
satisfy the following requirement: 

 

 Δ =  f −  i = ±1,±3,±5,......  
 

The photons involved in the transition carry away angular momentum.  The angular momentum 
carried away by the photon is 1  .  In order to conserve angular momentum the selection rules 
for    are replaced by the following rule: 

 
Δj = 0,±1  

 
It is obvious that when Δj = ±1  linear momentum is conserved when a photon carries away one 
unit of angular momentum.  When Δj = 0  angular momentum is conserved by changing the 
orientation of the total angular momentum vector. 
 


