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In this Chapter we will focus on solutions of the time-independent Schrödinger equation for 
various potentials. 
 
The Free Particle: V(x) = 0. 
The wavefunction for the free particle will have the following form: 

 

 Ψ x,t( ) =ψ x( )e−iEt / =ψ x( )e−iω t  
 

where E is the total energy of the particle.  The position dependent component of the 
wavefunction must satisfy the following differential equation 

 

 
−
2

2m
∂2ψ
∂x2

= Eψ  

 
The general solution of this equation is 

 
ψ x( ) = e±ikx  

 
In order for this function to be a solution we must require that 

 

 
−
2

2m
∂2 e±ikx( )
∂x2

= −
2

2m
±ik( )2 e±ikx = 

2k2

2m
e±ikx = Ee±ikx ⇒ k = 2mE


 

 
The general solution of the Schrödinger equation for a free particle is thus given by 

 
Ψ x,t( ) = Ae+ikx + Be−ikx( )e−iω t = Aei kx−ω t( ) + Bei −kx−ω t( )  

 
The first term of the solution represents a particle moving towards larger x.  Consider for 
example the position of the maximum of the real component of this term at time t.  The position 
of the maximum, x, must satisfy the following requirement: 

 
kx −ωt = 2πn  

 
or 

 

x = 2πn +ωt
k
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When we look at the position of the maximum at time t + dt we observe that is has move to a 
position x + dx where 

 

x + dx =
2πn +ω t + dt( )

k
=
2πn +ωt

k
+
ωdt
k

= x + ωdt
k

⇒ dx = ωdt
k

 

 
Since dt > 0 we conclude that dx > 0.  The maximum thus moves towards larger x.  We conclude 
that 

 
Ψ x,t( ) = Aei kx−ω t( ) : wave travelling to the right

Ψ x,t( ) = Bei −kx−ω t( ) : wave travelling to the left
 

 
Consider first the case where B = 0.  The probability distribution associated with the 
eigenfunction is equal to 

 
P x,t( ) = Ψ∗ x,t( )Ψ x,t( ) = A∗e−i kx−ω t( )( ) Aei kx−ω t( )( ) = A∗A  

 
The integral of the probability distribution must be equal to 1 and this requires that 

 

P x,t( )dx
−∞

∞

∫ = A∗Adx
−∞

∞

∫ = A∗A dx
−∞

∞

∫ = 1  

 
But the integral of dx will approach infinity and A∗A 	
  must approach 0.  However, in reality there 
are limits on the range of x and the integral of dx is thus finite.  As a consequence A∗A 	
  is	
  non-­‐
zero.	
  
The	
  momentum	
  of	
  the	
  particle	
  can	
  be	
  determined	
  by	
  calculating	
  the	
  expectation	
  value	
  of	
  p:	
  

	
  

 

p = p = Ψ pΨ = Ψ∗ −i ∂
∂x

⎛
⎝⎜

⎞
⎠⎟
Ψdx∫ = A∗A e−i kx−ω t( ) −i ∂

∂x
⎛
⎝⎜

⎞
⎠⎟
ei kx−ω t( ) dx∫ =

= A∗A −i( ) ik( )( ) e−i kx−ω t( )ei kx−ω t( ) dx∫ = k( )A∗A dx∫ = k
 

 
The expectation value of p is thus equal to 

	
  

 
p = k =  2mE


= 2mE  
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We thus conclude that Aei kx−ω t( )  represents a particle of momentum p  moving in the +x 
direction.  The probability distribution associated with this wavefunction is constant, and the 
uncertainty in the position of the free particle is approaching infinity.  As a consequence, the 
uncertainty in p will be equal to 

 

 
Δp ≥  / 2

Δx
→ 0  

 
The momentum of the particle is thus very well defined, and as a consequence, its energy is also 
well defined.  This is consistent with the fact that the particle has a single well-defined angular 
frequency. 
 
As we have seen in Chapter 3, a realistic particle will be described by a group of waves.  The 
group velocity for each of these waves is equal to 

 

 
vg =

dE
dp

=
d
dp

p2

2m
⎛
⎝⎜

⎞
⎠⎟
=
p
m

=

m
k  

 
Each wave will thus 
propagate with a 
different velocity.  As a 
result, a free particle that 
is localized well at time t 
= 0, will become less 
localized at a later time 
since the waves that 
contribute to its 
wavefunction propagate 
with different velocities.  
This is shown 
schematically in the 
Figure on the right where 
the sum of 200 waves 
with wave numbers 
between k = 19 and k = 
21 is displayed.  The 
particle is travelling towards the right and the width of the peak increases with increasing time, 
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indicating that the spread in x of the particle increases with time.  The Figure was created using 
the PsiFreeParticle.nb Mathematica notebook that can be downloaded from the Physics 237 
website. 
 
The Step Potential: V(x) = 0 for x < 0, V(x) = V0 for x > 0, and E < V0. 
Consider a particle approaching a step potential with an 
energy E < V0 (see Figure on the right).  When we 
consider the motion of this particle in a classical model 
we expect that when the particle approaches the step from 
the left, the particle will be reflected.  It will reverse its 
direction of motion but the magnitude of its momentum 
will remain the same (p = √(2mE)). 
The Schrödinger equation for this system can be written as: 

 

 

−
2

2m
d2ψ
dx2

= Eψ x < 0

−
2

2m
d2ψ
dx2

= − V0 − E( )ψ x > 0
 

 
In the region x < 0, the general solution to the Schrödinger equation can be written in the 
following way: 

 

 
ψ x<0 x( ) = Aeik1x + Be−ik1x where k1 =

2mE


 

 
The first term on the right-hand side of the solution describes a wave moving towards the right 
(the incident wave) while the second terms describes a wave moving to the left (the reflected 
wave). 
In the region x > 0, the general solution to the Schrödinger equation can be written in the 
following way: 

 

 
ψ x>0 x( ) = Cek2 x + De−k2 x where k2 =

2m V0 − E( )


 

 
In order for the solutions we indicated above to be valid eigenfunctions, we need to apply the 
following boundary conditions: 
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1. The wavefunctions must be finite for all x.  
For x > 0, this condition requires that C = 0 and 
the wavefunction in this region is thus equal to 

 

 
ψ x>0 x( ) = De−k2 x where k2 =

2m V0 − E( )


 

 
2. The wavefunctions must match at x = 0 (see 

Figure on the right).  This requires that 
 

ψ x<0 0( ) =ψ x>0 0( ) ⇒ A + B = D  
 

3. The derivative of the wavefunctions must 
match at x = 0 (see Figure on the right).  This requires that 

 
dψ x<0

dx
0( ) = dψ x>0

dx
0( ) ⇒ ik1 A − B( ) = −k2D  

 
The last two conditions can be used to obtain a relation between A and B: 

 
A + B = D
ik1 A − B( ) = −k2D

⎫
⎬
⎭

⇒ ik1 A − B( ) = A + B ⇒ A = −
k2 − ik1
k2 + ik1

⎛
⎝⎜

⎞
⎠⎟
B = −

k2
2 − k1

2 − 2ik1k2
k2
2 + k1

2

⎛
⎝⎜

⎞
⎠⎟
B  

 
The constant D can now be expressed in terms of the constant B: 

 

D = A + B = −
k2 − ik1
k2 + ik1

⎛
⎝⎜

⎞
⎠⎟
B + B =

k2 + ik1( ) − k2 − ik1( )
k2 + ik1

B =
2ik1

k2 + ik1
B  

 
The reflection coefficient R is defined as the ratio of the probability density of the reflected 
wave and the probability density of the incident wave.  For the step potential, the reflection 
coefficient is equal to 

 

R =
B∗B
A∗A

=
B∗B

k2
2 − k1

2 − 2ik1k2
k2
2 + k1

2
⎛
⎝⎜

⎞
⎠⎟

∗

B∗ k2
2 − k1

2 − 2ik1k2
k2
2 + k1

2
⎛
⎝⎜

⎞
⎠⎟
B
=

k2
2 + k1

2( )2
k2
2 − k1

2 − 2ik1k2( ) k22 − k12 + 2ik1k2( ) = 1  

 
The probability of a particle to be reflected is thus equal to 1.  However, we should note that the 
probability density distribution is not equal to zero in the region for which x > 0.  There is thus a 
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finite probability that the particle penetrates into the classically forbidden region before being 
reflected.  The probability density distribution in this region is equal to 

 

P x( ) =ψ x>0
∗ x( )ψ x>0 x( ) = D∗De−2k2 x = 4k1

2

k1
2 + k2

2 B
∗Be−2k2 x  

 
The probability density distribution falls off exponentially with position.  The reduction of the 
probability density distribution is often specified in terms of the distance Δx over which the 
probability density decreases by 1/e2.  For the step potential this distance can be obtained by 
solving the following equation: 

 

 

−2k2Δx = −2 ⇒ Δx = 1
k2

=


2m V0 − E( )
 

 
According to the uncertainty principle, this uncertainty in position corresponds to an uncertainty 
in momentum that satisfies the following relation: 

 

 

Δp ≥ 
Δx

=




2m V0 − E( )
⎛

⎝
⎜⎜

⎞

⎠
⎟⎟

= 2m V0 − E( )  

 
The uncertainty in the energy of the particle is thus equal to 

 

ΔE ≥
Δp( )2
2m

=
1
2m

2m V0 − E( )( ) = V0 − E( )  

 
 
The Step Potential: V(x) = 0 for x < 0, V(x) = V0 for x > 0, and E > V0. 
Consider a particle approaching a step potential with an 
energy E > V0 (see Figure on the right).  When we 
consider the motion of this particle in a classical model 
we expect that if the particle approaches the step from 
the left, it will continue to move to the right after passing 
the step.  However, the magnitude of its momentum will 
be reduced.  Classically we expect the following values 
for the linear momenta in the two regions: 
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px<0 = 2mE x < 0

px>0 = 2m E −V0( ) x > 0
 

 
The Schrödinger equation for this system can be written as: 

 

 

−
2

2m
d2ψ
dx2

= Eψ x < 0

−
2

2m
d2ψ
dx2

= E −V0( )ψ x > 0
 

 
In the region x < 0, the solution to the Schrödinger equation can be written in the following way: 

 

 
ψ x<0 x( ) = Aeik1x + Be−ik1x where k1 =

2mE


 

 
The first term on the right-hand side of the solution describes a wave moving towards the right 
(the incident wave) while the second terms describes a wave moving to the left (the reflected 
wave). 
In the region x > 0, the solution to the Schrödinger equation can be written in the following way: 

 

 
ψ x>0 x( ) = Ceik2 x + De−ik2 x where k2 =

2m E −V0( )


 

 
In order for the solutions we indicated above to be valid eigenfunctions, we need to apply the 
following boundary conditions: 
1. The wavefunction for x > 0 is expected to be a wave that moves toward the right.  This 

condition requires that D = 0 and the wavefunction in this region is thus equal to 
 

ψ x>0 x( ) = Ceik2 x  
 

2. The wavefunctions must match at x = 0.  This requires that 
 

ψ x<0 0( ) =ψ x>0 0( ) ⇒ A + B = C  
 

3. The derivative of the wavefunctions must match at x = 0.  This requires that 
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dψ x<0

dx
0( ) = dψ x>0

dx
0( ) ⇒ ik1 A − B( ) = ik2C  

 
The last two conditions can be used to obtain a relation between A and B: 

 
A + B = C
ik1 A − B( ) = ik2C

⎫
⎬
⎭

⇒ ik1 A − B( ) = ik2 A + B( ) ⇒ B =
ik1 − ik2
ik1 + ik2

⎛
⎝⎜

⎞
⎠⎟
A =

k1 − k2
k1 + k2

⎛
⎝⎜

⎞
⎠⎟
A  

 
The constant C can now be expressed in terms of the constant B: 

 

C = A + B = A +
k1 − k2
k1 + k2

⎛
⎝⎜

⎞
⎠⎟
A =

k1 + k2( ) + k1 − k2( )
k1 + k2

A =
2k1

k1 + k2
A  

 
The wavefunction of the particle is thus equal to 

 

ψ x( ) =
Aeik1x + k1 − k2

k1 + k2

⎛
⎝⎜

⎞
⎠⎟
Ae−ik1x x < 0

2k1
k1 + k2

⎛
⎝⎜

⎞
⎠⎟
Aeik2 x x > 0

⎧

⎨

⎪
⎪

⎩

⎪
⎪

 

 
The reflection coefficient R is defined as the ratio of the probability density of the reflected 
wave and the probability density of the incident wave.  For the step potential, the reflection 
coefficient is equal to 

 

R =
B∗B
A∗A

=

k1 − k2
k1 + k2

⎛
⎝⎜

⎞
⎠⎟
A∗ k1 − k2

k1 + k2

⎛
⎝⎜

⎞
⎠⎟
A

A∗A
=

k1 − k2( )2
k1 + k2( )2

< 1  

 
The probability of a particle to be reflected is thus less than 1.  Note that the reflection 
coefficient is 0 when k1 = k2.  This happens when V0 = 0 (no step) and is thus not a surprise. 
The transmission coefficient T is equal to 1 – R: 

 

T = 1− R = 1−
k1 − k2( )2
k1 + k2( )2

=
4k1k2
k1 + k2( )2

 

 
Now consider the probability density distribution in the region for which x > 0.  The probability 
density distribution in this region is equal to 
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P x( ) =ψ x>0
∗ x( )ψ x>0 x( ) = 2k1

k1 + k2

⎛
⎝⎜

⎞
⎠⎟
A∗e−ik2 x 2k1

k1 + k2

⎛
⎝⎜

⎞
⎠⎟
Aeik2 x = 2k1

k1 + k2

⎛
⎝⎜

⎞
⎠⎟

2

A∗A  

 
The probability density distribution in this region is thus constant.  The probability density 
distribution in the x < 0 region is equal to 

 

P x( ) =ψ x<0
∗ x( )ψ x<0 x( ) = A∗A eik1x + k1 − k2

k1 + k2
e−ik1x

⎧
⎨
⎩

⎫
⎬
⎭

*

eik1x + k1 − k2
k1 + k2

e−ik1x
⎧
⎨
⎩

⎫
⎬
⎭
=

= A∗A e−ik1x + k1 − k2
k1 + k2

eik1x
⎧
⎨
⎩

⎫
⎬
⎭
eik1x + k1 − k2

k1 + k2
e−ik1x

⎧
⎨
⎩

⎫
⎬
⎭
=

= A∗A 1+ k1 − k2
k1 + k2

⎛
⎝⎜

⎞
⎠⎟

2

+
k1 − k2
k1 + k2

ei2k1x + e−i2k1x( )
⎧
⎨
⎪

⎩⎪

⎫
⎬
⎪

⎭⎪
=

= A∗A 1+ k1 − k2
k1 + k2

⎛
⎝⎜

⎞
⎠⎟

2

+ 2 k1 − k2
k1 + k2

cos 2k1x( )
⎧
⎨
⎪

⎩⎪

⎫
⎬
⎪

⎭⎪

 

 
An example of the probability density distribution 
associated with the step potential is shown in the 
Figure on the right.  At x > 0, the probability density 
distribution is constant while at x < 0 the probability 
density distribution is equal to a constant and an 
oscillatory term. 
 
When we repeat the calculation for a particle approaching the step from the right-hand side, we 
obtain the same reflection and transmission coefficients.  We thus conclude that we get reflection 
anytime the particle encounters a step in the potential; it does not matter if we step up or step 
down. 
 
We can combine the results of our study of the 
step potential in the Figure shown on the right.  
When E is less than the barrier (E/V0 < 1) we saw 
that there is no transmission (T = 0) and only 
reflection (R = 1).  When E is larger than the 
barrier (E/V0 > 1) both reflection and 
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transmission occur.  The transmission coefficient increases with increasing energy above the 
barrier. 
 
The Potential Barrier: V(x) = 0 (x < 0), V(x) = V0 (0 < x < a), V(x) = 0 (x > a) 
Consider the potential barrier shown in the Figure 
on the right.  We will look at solutions of the 
Schrödinger equation that are associated with a 
particle approaching the barrier from the left with 
an energy E < V0.  The solutions in the regions x < 
0 and x > a are solutions for free particles.  In the region x < 0 we expect to see the sum of two 
wave functions: one travelling towards the right (the incident wave) and one travelling towards 
the left (the reflected wave).  In the region x > 0 we only expect to see one wave function: one 
travelling towards the right (the transmitted wave).  The most general solution for this problem is 
given by 

 

 

ψ x( ) =

Aeik1x + Be−ik1x x < 0 k1 =
2mE


Fe−k2 x +Gek2 x 0 < x < a k2 =
2m V0 − E( )


Ceik1x + De−ik1x a < x k1 =
2mE


⎧

⎨

⎪
⎪
⎪⎪

⎩

⎪
⎪
⎪
⎪

 

 
Since we do not expect to see waves travelling to the left in the region x > a we must require that 
D = 0.  All other constants are not equal to 0.  We now can apply the matching conditions: 
1. The wavefunctions must match at x = 0.  This requires that 

 
ψ x<0 0( ) =ψ x>0 0( ) ⇒ A + B = F +G  

 
2. The derivative of the wavefunctions must match at x = 0.  This requires that 

 
dψ x<0

dx
0( ) = dψ x>0

dx
0( ) ⇒ ik1 A − B( ) = −k2 F −G( )  

 
3. The wavefunctions must match at x = a.  This requires that 

 
ψ x<a a( ) =ψ x>a a( ) ⇒ Fe−k2a +Gek2a = Ceik1a  
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4. The derivative of the wavefunctions must match at x = a.  This requires that 
 

dψ x<a

dx
a( ) = dψ x>a

dx
a( ) ⇒ − k2 Fe−k2a −Gek2a( ) = ik1Ceik1a  

 
The reflection and transmission coefficients depend on A, B, and C.  The first step will thus be to 
eliminate F and G.  Consider the matching conditions at x = 0: 

 
A + B = F +G (1)

A − B = i k2
k1

F −G( ) (2)

(1) + (2) : 2A = F 1+ i k2
k1

⎛
⎝⎜

⎞
⎠⎟
+G 1− i k2

k1

⎛
⎝⎜

⎞
⎠⎟

(1) − (2) : 2B = F 1− i k2
k1

⎛
⎝⎜

⎞
⎠⎟
+G 1+ i k2

k1

⎛
⎝⎜

⎞
⎠⎟

 

 
The matching conditions at x = a can be used to express F and G in terms of C: 

 

Fe−2k2a +G = Ceik1ae−k2a (1)

Fe−2k2a −G = −i k1
k2
Ceik1ae−k2a (2)

(1) + (2) : 2Fe−2k2a = C 1− i k1
k2

⎛
⎝⎜

⎞
⎠⎟
eik1ae−k2a ⇒ 2F = C 1− i k1

k2

⎛
⎝⎜

⎞
⎠⎟
eik1aek2a

(1) − (2) : 2G = C 1+ i k1
k2

⎛
⎝⎜

⎞
⎠⎟
eik1ae−k2a

 

 
Using these two expressions for F and G we can obtain the following relation between A and C: 

	
  

A =
1
2
F 1+ i k2

k1

⎛
⎝⎜

⎞
⎠⎟
+
1
2
G 1− i k2

k1

⎛
⎝⎜

⎞
⎠⎟
=

=
1
4
C 1− i k1

k2

⎛
⎝⎜

⎞
⎠⎟
eik1aek2a 1+ i k2

k1

⎛
⎝⎜

⎞
⎠⎟
+
1
4
C 1+ i k1

k2

⎛
⎝⎜

⎞
⎠⎟
eik1ae−k2a 1− i k2

k1

⎛
⎝⎜

⎞
⎠⎟
=

=
1
4
C 2 − i k1

k2
−
k2
k1

⎛
⎝⎜

⎞
⎠⎟

⎛

⎝⎜
⎞

⎠⎟
ek2a + 2 + i k1

k2
−
k2
k1

⎛
⎝⎜

⎞
⎠⎟

⎛

⎝⎜
⎞

⎠⎟
e−k2a

⎧
⎨
⎪

⎩⎪

⎫
⎬
⎪

⎭⎪
eik1a
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If we define the constant α as k1/k2 – k2/k1, we can rewrite A as 

 

A =
1
4
C 2 − iα( )ek2a + 2 + iα( )e−k2a{ }eik1a 	
  

	
  
The complex conjugate of A is thus equal to 

 

A∗ =
1
4
C∗ 2 + iα( )ek2a + 2 − iα( )e−k2a{ }e−ik1a 	
  

	
  
The product of A and the complex conjugate of A is equal to 

 

A∗A =
1
16
C∗C 2 + iα( )ek2a + 2 − iα( )e−k2a{ } 2 − iα( )ek2a + 2 + iα( )e−k2a{ } =

=
1
16
C∗C 4 +α 2( ) ek2a + e−k2a( ) + 2 − iα( )2 + 2 + iα( )2{ } =

=
1
16
C∗C 4 +α 2( ) e2k2a + e−2k2a( ) + 4 − 4iα −α 2( ) + 4 + 4iα −α 2( ){ } =

=
1
16
C∗C 4 +α 2( ) e2k2a + e−2k2a( ) + 2 4 −α 2( ){ } =

= C∗C 1
16

4 +α 2( ) ek2a − e−k2a( )2 +1⎧
⎨
⎩

⎫
⎬
⎭

	
  

	
  
The constant α can be expressed in terms of the properties of the barrier: 

 

 

α =
k1
k2

−
k2
k1

=
k1
2 − k2

2

k1k2
=

2mE
2

−
2m V0 − E( )
2

2m E V0 − E( )
2

=
E − V0 − E( )
E V0 − E( )

=
2E −V0
E V0 − E( )

 

 
The term 4 + α 2 can be rewritten as 

 

4 +α 2 = 4 + 2E −V0
E V0 − E( )

⎛

⎝
⎜
⎜

⎞

⎠
⎟
⎟

2

=
4E V0 − E( ) + 2E −V0( )2

E V0 − E( ) =
V0
2

E V0 − E( ) =
1

E
V0

1− E
V0

⎛
⎝⎜

⎞
⎠⎟

 

 
We can now rewrite the product of the complex conjugate of A and A as 
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A∗A = C∗C 1+
ek2a − e−k2a( )2

16 E
V0

1− E
V0

⎛
⎝⎜

⎞
⎠⎟

⎛

⎝

⎜
⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟
⎟

 

 
The transmission coefficient is thus equal to 

 

T =
C∗C
A∗A

= 1+
ek2a − e−k2a( )2

16 E
V0

1− E
V0

⎛
⎝⎜

⎞
⎠⎟

⎛

⎝

⎜
⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟
⎟

−1

 

 
If k2a >> 1, we can approximate this expression by 

 

 

T =
C∗C
A∗A

= 1+ e
2k2a − 2 + e−2k2a

16 E
V0

1− E
V0

⎛
⎝⎜

⎞
⎠⎟

⎛

⎝

⎜
⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟
⎟

−1

=
k2a1

e2k2a

16 E
V0

1− E
V0

⎛
⎝⎜

⎞
⎠⎟

⎛

⎝

⎜
⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟
⎟

−1

= 16 E
V0

1− E
V0

⎛
⎝⎜

⎞
⎠⎟
e−2k2a  

 
The transmission coefficient depends on the area under the barrier: 

 

 
k2a =

2m
2

V0 − E( )a  

 
The energy dependence of T is dominated by the energy dependence of the exponential term.  
When the barrier is position dependent, the 
exponential term is approximated by 

 

 e−2k2a → e
−2 dx 2m

2
V x( )−E( )∫  

 
 
Applications of Tunneling 
1. Alpha decay. 

Consider the potential that is seen by the 
alpha particle when it leaves the nucleus.  The 
shape of the potential barrier at r > R is 
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dominated by the repulsive Coulomb potential.  At distances r < R the potential is dominated 
by the strong attractive nuclear potential.  Assume that the energy of the alpha particle is E.  
The transmission probability is proportional to 

 

 T  e
−2 2m

2
V r( )−E( ) dr

R

b

∫
= e

−2 2m
2

1
4πε0

Z1Z2e
2

r
−E

⎛

⎝
⎜

⎞

⎠
⎟ dr

R

b

∫
 

 
where Z1 is the charge of the daughter nucleus (the charge of the nucleus after alpha 
emission) and Z2 is the charge of the alpha particle (Z2 = 2).  The turning point b is defined as 
the point where the alpha particle emerges from the barrier.  At this position, the Coulomb 
potential is equal to the energy of the alpha particle: 

 

E =
1
4πε0

Z1Z2e
2

b
 

 
The integral can be evaluated exactly: 

 

1
4πε0

Z1Z2e
2

r
− E

⎛
⎝⎜

⎞
⎠⎟
dr

R

b

∫ =
1
4πε0

Z1Z2e
2

r
−
Z1Z2e

2

b
⎛
⎝⎜

⎞
⎠⎟

⎛

⎝⎜
⎞

⎠⎟
dr

R

b

∫ =

=
Z1Z2e

2

4πε0
b cos−1 R

b
⎛

⎝⎜
⎞

⎠⎟
−

R
b
−
R2

b2
⎧
⎨
⎪

⎩⎪

⎫
⎬
⎪

⎭⎪
 

 
At low energies, low compared to the height of the barrier, b >> R and the integral is 
approximately equal to 

 
1
4πε0

Z1Z2e
2

r
− E

⎛
⎝⎜

⎞
⎠⎟
dr

R

b

∫ =
b>>R

Z1Z2e
2

4πε0
b π
2
−

R
b

⎧
⎨
⎪

⎩⎪

⎫
⎬
⎪

⎭⎪
 

 
This expression can be rewritten as 

 
1
4πε0

Z1Z2e
2

r
− E

⎛
⎝⎜

⎞
⎠⎟
dr

R

b

∫ ≈
Z1Z2e

2

4πε0
b π
2

⎛
⎝⎜

⎞
⎠⎟
=

Z1Z2e
2

4πε0
Z1Z2e

2

4πε0E
π
2

⎛
⎝⎜

⎞
⎠⎟
=
Z1Z2e

2

4πε0
π
2

⎛
⎝⎜

⎞
⎠⎟
1
E

 

 
The exponent is thus equal to 
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2 2m
2

1
4πε0

Z1Z2e
2

r
− E

⎛
⎝⎜

⎞
⎠⎟
dr

R

b

∫ = 2 2m
2

Z1Z2e
2

4πε0
π
2
1
E

= 2 2mc2

2c2
e2

4πε0
π Z1

E
=

= 2π 2mc2 e2

4πε0c
Z1
E

⎛
⎝⎜

⎞
⎠⎟
 562 1

137
Z1
E

⎛
⎝⎜

⎞
⎠⎟
= 4 Z1

E
⎛
⎝⎜

⎞
⎠⎟

 

where E is the energy of the alpha particle in MeV.  The probability that the alpha particle 
tunnels through the barrier is thus equal to 

 

T ≈ e
−4

Z1
E

⎛
⎝⎜

⎞
⎠⎟  

 
In order for the alpha particle to tunnel through the barrier, it must interact with the barrier n 
times where 

 

n ≈ e
4

Z1
E

⎛
⎝⎜

⎞
⎠⎟  

 
In a very classical picture, we can assume that if the alpha particle is reflected, it will 
encounter the barrier again on the other side of the nucleus.  The number of collisions of the 
alpha particle with the barrier per second is equal to 

 

rcollisions =
v
2R

 

 
where v is the velocity of the alpha particle.  The typical energy of alpha particles produced 
in nuclear decays is 1 – 10 MeV.  The velocity of a 1 MeV alpha particle is equal to 

 

v = 2E
m

= c 2E
mc2 ≈ c 2 ×1

4000
= c 1

2000
= 6.7 ×106  m/s  

 
The velocity of a 10 MeV alpha particle is 2.1×107  m/s .  The radius of a nucleus of 1.5 A1/3 
fm.  For A = 200, we find R = 8.7 fm.  The collision rate for a 1 MeV alpha particle is thus 
equal to 

 

rcollisions =
6.7 ×106

2 8.7 ×10−15( ) = 2.3×1020  s−1  

 
The lifetime of the nucleus is thus equal to 
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τ =
n

rcollisions
≈
2R
v
e
4

Z1
E

⎛
⎝⎜

⎞
⎠⎟  

 
It is customary to look at the relation between the decay rate 1/τ and the energy of the alpha 
particle: 

 

1
τ
≈

v
2R

e
−4

Z1
E

⎛
⎝⎜

⎞
⎠⎟ ⇒ log 1

τ
= log v

2R
−1.7 Z1

E
≈ 20 −1.7 Z1

E
 

 



Physics 237  Notes Chapter 6 

   
February 23, 2010  Page 17 of 26 

2. Scanning Tunneling Microscope 
The scanning tunneling microscope relies on the 
exponential dependence of the transmission 
coefficient on the barrier width.  Small variations 
in a lead to huge variations in T. 
A schematic of the operation of the scanning 
tunneling microscope is shown in the Figure on 
the right, obtained from 
http://www.absoluteastronomy.com/topics/Scann
ing_tunneling_microscope.  An electric current 
tunnels through the gap between the sample and the tip.  The position of the tip is adjusted 
such that the current stays constant.  In this way, the position of the tip follows the structure 
of the surface; the structure of the surface can thus can be mapped with great precision. 

 
The Infinite Square Well: V(x) = ∞ for x < -a/2 and x > a/2, V(x) = 0 for -a/2 < x < a/2. 
Since the potential in the region x < -a/2 and x > a/2 is 
infinite, the probability to find a particle in these regions 
is zero.  The wavefunction in this region is thus also 0.  In 
the region -a/2 < x < a/2, the wavefunction should have 
the same form as the wavefunction of the free particle.  
We thus conclude that 

 

ψ x( ) =

0 x < −
a
2

Aeikx + Be−ikx −
a
2
< x < a

2

0 a
2
< x

⎧

⎨

⎪
⎪
⎪

⎩

⎪
⎪
⎪

 

 
We note that the solutions inside the well can be written as the sum of a cosine and sine function: 

 

Aeikx + Be−ikx =
B '
2
+
A '
2i

⎛
⎝⎜

⎞
⎠⎟
eikx + B '

2
−
A '
2i

⎛
⎝⎜

⎞
⎠⎟
e−ikx =

= B ' e
ikx + e−ikx

2
⎛
⎝⎜

⎞
⎠⎟
+ A ' e

ikx − e−ikx

2i
⎛
⎝⎜

⎞
⎠⎟
= B 'cos kx( ) + A 'sin kx( )
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The following boundary conditions are required to be satisfied: 
 
1. The wavefunction must be continuous at x = -a/2 and at x = a/2.  This requires that: 

 

ψ x = −
a
2

⎛
⎝⎜

⎞
⎠⎟
= B 'cos −k a

2
⎛
⎝⎜

⎞
⎠⎟
+ A 'sin −k a

2
⎛
⎝⎜

⎞
⎠⎟
= B 'cos k a

2
⎛
⎝⎜

⎞
⎠⎟
− A 'sin k a

2
⎛
⎝⎜

⎞
⎠⎟
= 0 (1)

ψ x = +
a
2

⎛
⎝⎜

⎞
⎠⎟
= B 'cos k a

2
⎛
⎝⎜

⎞
⎠⎟
+ A 'sin k a

2
⎛
⎝⎜

⎞
⎠⎟
= 0 (2)

 

 
2. Since the potential goes to infinity at x = -a/2 and at x = a/2 there is no requirement that 

the slope of the wavefunction is continuous at x = -a/2 and at x = a/2. 
 
By manipulating the equations that are consistent with condition 1 we can conclude: 

 

(1) + (2) = 2B 'cos k a
2

⎛
⎝⎜

⎞
⎠⎟
= 0 ⇒ k a

2
=
π
2
, 3π
2
, 5π
2
,... ⇒ k = π

a
, 3π
a
, 5π
a
,...

(1) − (2) = 2A 'sin k a
2

⎛
⎝⎜

⎞
⎠⎟
= 0 ⇒ k a

2
= π ,2π , 3π ,... ⇒ k = 2π

a
, 4π
a
,π
a
,...

 

 
Both of these conditions must be satisfied at the same time.  Consider the following 2 
possibilities: 

1. If B ' ≠ 0 ⇒ cos k a
2

⎛
⎝⎜

⎞
⎠⎟
= 0 ⇒ sin k a

2
⎛
⎝⎜

⎞
⎠⎟
= ±1 ⇒ A ' = 0  

2. If A ' ≠ 0 ⇒ sin k a
2

⎛
⎝⎜

⎞
⎠⎟
= 0 ⇒ cos k a

2
⎛
⎝⎜

⎞
⎠⎟
= ±1 ⇒ B ' = 0  

The general solution of the infinite square well can thus be written as: 
 

ψ x( ) =

0 x < −
a
2

An sin knx( ), kn =
nπ
a
, n = 2,4,6,....

Bn cos knx( ), kn =
nπ
a
, n = 1,3,5,....

−
a
2
< x < a

2

0 a
2
< x

⎧

⎨

⎪
⎪
⎪
⎪
⎪

⎩

⎪
⎪
⎪
⎪
⎪
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Examples of the wavefunctions for n = 1, 2, and 3 are shown in 
the Figure on the right.  We observe that for odd n the 
wavefunction is even (even parity) while for even n the 
wavefunction is odd (odd parity). 
The value of kn is quantized.  Since kn is related to the energy of 
the particle, the energy is also quantized: 

 

 
kn =

nπ
a

=
2mEn


⇒ En =

2kn
2

2m
=
π 22n2

2m
, n = 1,2,3,....  

 
The energy of the particle is thus never equal to 0.  The 
lowest 5 energy levels for the infinite well are 
schematically shown in the Figure on the right.  The 
spacing between individual levels increases when n 
increases. 
 
The Finite Square Well: V(x) = V0 for x < -a/2 and x > 
a/2, V(x) = 0 for -a/2 < x < a/2. 
The infinite square well shows how quantization of 
energy emerges from the Schrödinger equation.  
However, it is not realistic to assume that the potential approaches infinity in regions outside the 
well, and a more realistic study of a potential well requires us to consider the finite square well. 
The finite square well is shown schematically 
in the Figure on the right.  Assuming that the 
energy of the particle we are describing is 
below V0 we expect to see exponentially 
decaying wavefunctions in the regions where x 
< -a/2 or x > a/2.  Inside the well, the shape of 
the wavefunctions should be similar to the 
shape of the wavefunctions in this region for 
the infinite well, except that the value of the 
wavefunction at the walls is no longer required to be zero. 
The most general solution of the Schrödinger equation for this potential is given by the following 
expression: 
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ψ x( ) =

Cek2 x + De−k2 x where k2 =
2m V0 − E( )


x < −
a
2

Asin k1x( ) + Bcos k1x( ) where k1 =
2mE


−
a
2
< x < a

2

Fek2 x +Ge−k2 x where k2 =
2m V0 − E( )


a
2
< x

⎧

⎨

⎪
⎪
⎪⎪

⎩

⎪
⎪
⎪
⎪

 

 
In order for this wavefunction to be a valid eigenfunction we must require that the following 
conditions are met: 
 
1. Require that the eigenfunction remains finite.  In order to ensure that this requirement is 

met when x approach ± infinity we must require that D = F = 0. 
 
2. The wavefunctions must match at x = -a/2.  This requires that 

 

ψ x ↑ −
a
2

⎛
⎝⎜

⎞
⎠⎟
=ψ x ↓ −

a
2

⎛
⎝⎜

⎞
⎠⎟

⇒ Ce
−k2

a
2 = Asin −k1

a
2

⎛
⎝⎜

⎞
⎠⎟
+ Bcos −k1

a
2

⎛
⎝⎜

⎞
⎠⎟  

 
3. The derivative of the wavefunctions must match at x = -a/2.  This requires that 

 
dψ
dx

x ↑ −
a
2

⎛
⎝⎜

⎞
⎠⎟
=
dψ
dx

x ↓ −
a
2

⎛
⎝⎜

⎞
⎠⎟

⇒ Ck2e
−k2

a
2 = Ak1 cos −k1

a
2

⎛
⎝⎜

⎞
⎠⎟
− Bk1 sin −k1

a
2

⎛
⎝⎜

⎞
⎠⎟  

 
4. The wavefunctions must match at x = a/2.  This requires that 

 

ψ x ↓ a
2

⎛
⎝⎜

⎞
⎠⎟
=ψ x ↑ a

2
⎛
⎝⎜

⎞
⎠⎟

⇒ Ge
−k2

a
2 = Asin k1

a
2

⎛
⎝⎜

⎞
⎠⎟
+ Bcos k1

a
2

⎛
⎝⎜

⎞
⎠⎟  

 
5. The derivative of the wavefunctions must match at x = a/2.  This requires that 

 
dψ
dx

x ↓ −
a
2

⎛
⎝⎜

⎞
⎠⎟
=
dψ
dx

x ↑ −
a
2

⎛
⎝⎜

⎞
⎠⎟

⇒ −Gk2e
−k2

a
2 = Ak1 cos k1

a
2

⎛
⎝⎜

⎞
⎠⎟
− Bk1 sin k1

a
2

⎛
⎝⎜

⎞
⎠⎟  

 
The total number of unknown in these fours equations is 5: A, B, C, G, and the energy E, which 
defines k1 and k2.  It would appear that we cannot uniquely determine the unknown.  But we 
should realize that the wavefunction must be normalized and there is thus one addition 
requirement that must be satisfied by the wavefunction. 
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Consider the following 4 requirements obtained from the matching requirements: 
 

Ce
−k2

a
2 = Asin −k1

a
2

⎛
⎝⎜

⎞
⎠⎟
+ Bcos −k1

a
2

⎛
⎝⎜

⎞
⎠⎟
= −Asin k1

a
2

⎛
⎝⎜

⎞
⎠⎟
+ Bcos k1

a
2

⎛
⎝⎜

⎞
⎠⎟

Ck2e
−k2

a
2 = Ak1 cos −k1

a
2

⎛
⎝⎜

⎞
⎠⎟
− Bk1 sin −k1

a
2

⎛
⎝⎜

⎞
⎠⎟
= Ak1 cos k1

a
2

⎛
⎝⎜

⎞
⎠⎟
+ Bk1 sin k1

a
2

⎛
⎝⎜

⎞
⎠⎟

Ge
−k2

a
2 = Asin k1

a
2

⎛
⎝⎜

⎞
⎠⎟
+ Bcos k1

a
2

⎛
⎝⎜

⎞
⎠⎟

−Gk2e
−k2

a
2 = Ak1 cos k1

a
2

⎛
⎝⎜

⎞
⎠⎟
− Bk1 sin k1

a
2

⎛
⎝⎜

⎞
⎠⎟

 

 
We can rewrite these equations in the following way: 

 

−Asin k1
a
2

⎛
⎝⎜

⎞
⎠⎟
+ Bcos k1

a
2

⎛
⎝⎜

⎞
⎠⎟
− Ce

−k2
a
2 = 0

Ak1 cos k1
a
2

⎛
⎝⎜

⎞
⎠⎟
+ Bk1 sin k1

a
2

⎛
⎝⎜

⎞
⎠⎟
− Ck2e

−k2
a
2 = 0

Asin k1
a
2

⎛
⎝⎜

⎞
⎠⎟
+ Bcos k1

a
2

⎛
⎝⎜

⎞
⎠⎟
−Ge

−k2
a
2 = 0

Ak1 cos k1
a
2

⎛
⎝⎜

⎞
⎠⎟
− Bk1 sin k1

a
2

⎛
⎝⎜

⎞
⎠⎟
+Gk2e

−k2
a
2 = 0

 

 
or 

 

− sin k1
a
2

⎛
⎝⎜

⎞
⎠⎟

cos k1
a
2

⎛
⎝⎜

⎞
⎠⎟

−e
−k2

a
2 0

k1 cos k1
a
2

⎛
⎝⎜

⎞
⎠⎟

k1 sin k1
a
2

⎛
⎝⎜

⎞
⎠⎟

−k2e
−k2

a
2 0

sin k1
a
2

⎛
⎝⎜

⎞
⎠⎟

cos k1
a
2

⎛
⎝⎜

⎞
⎠⎟

0 −e
−k2

a
2

k1 cos k1
a
2

⎛
⎝⎜

⎞
⎠⎟

−k1 sin k1
a
2

⎛
⎝⎜

⎞
⎠⎟

0 k2e
−k2

a
2

⎛

⎝

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟

A
B
C
G

⎛

⎝

⎜
⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟
⎟

= 0  

 
This equation has a non-trivial solution when the determinant of the matrix vanishes.  This 
requires that 
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− sin k1
a
2

⎛
⎝⎜

⎞
⎠⎟

cos k1
a
2

⎛
⎝⎜

⎞
⎠⎟

−e
−k2

a
2 0

k1 cos k1
a
2

⎛
⎝⎜

⎞
⎠⎟

k1 sin k1
a
2

⎛
⎝⎜

⎞
⎠⎟

−k2e
−k2

a
2 0

sin k1
a
2

⎛
⎝⎜

⎞
⎠⎟

cos k1
a
2

⎛
⎝⎜

⎞
⎠⎟

0 −e
−k2

a
2

k1 cos k1
a
2

⎛
⎝⎜

⎞
⎠⎟

−k1 sin k1
a
2

⎛
⎝⎜

⎞
⎠⎟

0 k2e
−k2

a
2

= 0  

 
This is equivalent to 

 

− sin k1
a
2

⎛
⎝⎜

⎞
⎠⎟

k1 sin k1
a
2

⎛
⎝⎜

⎞
⎠⎟

−k2e
−k2

a
2 0

cos k1
a
2

⎛
⎝⎜

⎞
⎠⎟

0 −e
−k2

a
2

−k1 sin k1
a
2

⎛
⎝⎜

⎞
⎠⎟

0 k2e
−k2

a
2

− cos k1
a
2

⎛
⎝⎜

⎞
⎠⎟

k1 cos k1
a
2

⎛
⎝⎜

⎞
⎠⎟

−k2e
−k2

a
2 0

sin k1
a
2

⎛
⎝⎜

⎞
⎠⎟

0 −e
−k2

a
2

k1 cos k1
a
2

⎛
⎝⎜

⎞
⎠⎟

0 k2e
−k2

a
2

− e
−k2

a
2

k1 cos k1
a
2

⎛
⎝⎜

⎞
⎠⎟

k1 sin k1
a
2

⎛
⎝⎜

⎞
⎠⎟

0

sin k1
a
2

⎛
⎝⎜

⎞
⎠⎟

cos k1
a
2

⎛
⎝⎜

⎞
⎠⎟

−e
−k2

a
2

k1 cos k1
a
2

⎛
⎝⎜

⎞
⎠⎟

−k1 sin k1
a
2

⎛
⎝⎜

⎞
⎠⎟

k2e
−k2

a
2

= 0

 
Each determinant can be evaluated: 

 

k1 sin k1
a
2

⎛
⎝⎜

⎞
⎠⎟

−k2e
−k2

a
2 0

cos k1
a
2

⎛
⎝⎜

⎞
⎠⎟

0 −e
−k2

a
2

−k1 sin k1
a
2

⎛
⎝⎜

⎞
⎠⎟

0 k2e
−k2

a
2

= k2e
−k2a k2 cos k1

a
2

⎛
⎝⎜

⎞
⎠⎟
− k1 sin k1

a
2

⎛
⎝⎜

⎞
⎠⎟

⎛
⎝⎜

⎞
⎠⎟
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k1 cos k1
a
2

⎛
⎝⎜

⎞
⎠⎟

−k2e
−k2

a
2 0

sin k1
a
2

⎛
⎝⎜

⎞
⎠⎟

0 −e
−k2

a
2

k1 cos k1
a
2

⎛
⎝⎜

⎞
⎠⎟

0 k2e
−k2

a
2

= k2e
−k2a k2 sin k1

a
2

⎛
⎝⎜

⎞
⎠⎟
+ k1 cos k1

a
2

⎛
⎝⎜

⎞
⎠⎟

⎛
⎝⎜

⎞
⎠⎟

 

 

k1 cos k1
a
2

⎛
⎝⎜

⎞
⎠⎟

k1 sin k1
a
2

⎛
⎝⎜

⎞
⎠⎟

0

sin k1
a
2

⎛
⎝⎜

⎞
⎠⎟

cos k1
a
2

⎛
⎝⎜

⎞
⎠⎟

−e
−k2

a
2

k1 cos k1
a
2

⎛
⎝⎜

⎞
⎠⎟

−k1 sin k1
a
2

⎛
⎝⎜

⎞
⎠⎟

k2e
−k2

a
2

=
k1 cos k1

a
2

⎛
⎝⎜

⎞
⎠⎟
cos k1

a
2

⎛
⎝⎜

⎞
⎠⎟
k2 − k1 sin k1

a
2

⎛
⎝⎜

⎞
⎠⎟

⎛
⎝⎜

⎞
⎠⎟
e
−k2

a
2 −

k1 sin k1
a
2

⎛
⎝⎜

⎞
⎠⎟
sin k1

a
2

⎛
⎝⎜

⎞
⎠⎟
k2 + k1 cos k1

a
2

⎛
⎝⎜

⎞
⎠⎟

⎛
⎝⎜

⎞
⎠⎟
e
−k2

a
2 =

= k1k2 cos
2 k1

a
2

⎛
⎝⎜

⎞
⎠⎟
− 2k1

2 cos k1
a
2

⎛
⎝⎜

⎞
⎠⎟
sin k1

a
2

⎛
⎝⎜

⎞
⎠⎟
− k1k2 sin

2 k1
a
2

⎛
⎝⎜

⎞
⎠⎟

⎡
⎣⎢

⎤
⎦⎥
e
−k2

a
2 =

= k1k2 cos2 k1
a
2

⎛
⎝⎜

⎞
⎠⎟
− sin2 k1

a
2

⎛
⎝⎜

⎞
⎠⎟

⎛
⎝⎜

⎞
⎠⎟
e
−k2

a
2 − 2k1

2 cos k1
a
2

⎛
⎝⎜

⎞
⎠⎟
sin k1

a
2

⎛
⎝⎜

⎞
⎠⎟
e
−k2

a
2

 
The determinant of the matrix is thus equal to 

 

− sin k1
a
2

⎛
⎝⎜

⎞
⎠⎟
k2e

−k2a k2 cos k1
a
2

⎛
⎝⎜

⎞
⎠⎟
− k1 sin k1

a
2

⎛
⎝⎜

⎞
⎠⎟

⎛
⎝⎜

⎞
⎠⎟
− cos k1

a
2

⎛
⎝⎜

⎞
⎠⎟
k2e

−k2a k2 sin k1
a
2

⎛
⎝⎜

⎞
⎠⎟
+ k1 cos k1

a
2

⎛
⎝⎜

⎞
⎠⎟

⎛
⎝⎜

⎞
⎠⎟

− e−k2ak1k2 cos2 k1
a
2

⎛
⎝⎜

⎞
⎠⎟
− sin2 k1

a
2

⎛
⎝⎜

⎞
⎠⎟

⎛
⎝⎜

⎞
⎠⎟
e
−k2

a
2 − 2k1

2 cos k1
a
2

⎛
⎝⎜

⎞
⎠⎟
sin k1

a
2

⎛
⎝⎜

⎞
⎠⎟
e
−k2

a
2 =

= −2 k1
2 + k2

2( )e−k2a sin k1
a
2

⎛
⎝⎜

⎞
⎠⎟
cos k1

a
2

⎛
⎝⎜

⎞
⎠⎟
+ 2k1k2e

−k2a sin2 k1
a
2

⎛
⎝⎜

⎞
⎠⎟
− 2k1k2e

−k2a cos2 k1
a
2

⎛
⎝⎜

⎞
⎠⎟
= 0

 
This requires that 

 

2 k1
2 + k2

2( )sin k1
a
2

⎛
⎝⎜

⎞
⎠⎟
cos k1

a
2

⎛
⎝⎜

⎞
⎠⎟
− 2k1k2 sin

2 k1
a
2

⎛
⎝⎜

⎞
⎠⎟
+ 2k1k2 cos

2 k1
a
2

⎛
⎝⎜

⎞
⎠⎟
= 0  

 
This equation can be rewritten as 

 

k1
2 + k2

2( )sin 2k1
a
2

⎛
⎝⎜

⎞
⎠⎟
+ 2k1k2 cos 2k1

a
2

⎛
⎝⎜

⎞
⎠⎟
= 0 ⇒ k1

2 + k2
2( ) + 2k1k2 cot 2k1 a2

⎛
⎝⎜

⎞
⎠⎟
= 0  
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This equation can be used to express k2 in terms of k1: 

 

k2
2 + 2k1 cot 2k1

a
2

⎛
⎝⎜

⎞
⎠⎟
k2 + k1

2 = 0 ⇒

k2 =
−2k1 cot 2k1

a
2

⎛
⎝⎜

⎞
⎠⎟ ± 4k1

2 cot2 2k1
a
2

⎛
⎝⎜

⎞
⎠⎟ − 4k1

2

2
= −k1 cot 2k1

a
2

⎛
⎝⎜

⎞
⎠⎟
± k1 cot2 2k1

a
2

⎛
⎝⎜

⎞
⎠⎟
−1 =

= −k1
cos2 k1

a
2

⎛
⎝⎜

⎞
⎠⎟ − sin

2 k1
a
2

⎛
⎝⎜

⎞
⎠⎟

2sin k1
a
2

⎛
⎝⎜

⎞
⎠⎟ cos k1

a
2

⎛
⎝⎜

⎞
⎠⎟

± k1
cos2 k1

a
2

⎛
⎝⎜

⎞
⎠⎟ − sin

2 k1
a
2

⎛
⎝⎜

⎞
⎠⎟

⎛
⎝⎜

⎞
⎠⎟
2

4 sin2 k1
a
2

⎛
⎝⎜

⎞
⎠⎟ cos

2 k1
a
2

⎛
⎝⎜

⎞
⎠⎟

−1 =

= −k1
cos2 k1

a
2

⎛
⎝⎜

⎞
⎠⎟ − sin

2 k1
a
2

⎛
⎝⎜

⎞
⎠⎟

2sin k1
a
2

⎛
⎝⎜

⎞
⎠⎟ cos k1

a
2

⎛
⎝⎜

⎞
⎠⎟

± k1
cos2 k1

a
2

⎛
⎝⎜

⎞
⎠⎟ − sin

2 k1
a
2

⎛
⎝⎜

⎞
⎠⎟

2sin k1
a
2

⎛
⎝⎜

⎞
⎠⎟ cos k1

a
2

⎛
⎝⎜

⎞
⎠⎟

=

=

k1
sin2 k1

a
2

⎛
⎝⎜

⎞
⎠⎟

sin k1
a
2

⎛
⎝⎜

⎞
⎠⎟ cos k1

a
2

⎛
⎝⎜

⎞
⎠⎟
= k1 tan k1

a
2

⎛
⎝⎜

⎞
⎠⎟

−k1
cos2 k1

a
2

⎛
⎝⎜

⎞
⎠⎟

sin k1
a
2

⎛
⎝⎜

⎞
⎠⎟ cos k1

a
2

⎛
⎝⎜

⎞
⎠⎟
= −k1 cot k1

a
2

⎛
⎝⎜

⎞
⎠⎟

⎧

⎨

⎪
⎪
⎪
⎪⎪

⎩

⎪
⎪
⎪
⎪
⎪

 

 
The requirement to find a solution is thus equivalent to the following two requirements: 

 

k2 =
k1 tan k1

a
2

⎛
⎝⎜

⎞
⎠⎟

−k1 cot k1
a
2

⎛
⎝⎜

⎞
⎠⎟

⎧

⎨
⎪
⎪

⎩
⎪
⎪

 

 
But, k2 is related to k1: 

 

 
k2
2 =

2m V0 − E( )
2

=
2mV0
2

−
2mE
2

=
2mV0
2

− k1
2  
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The requirements to find a solution can thus be rewritten as: 
 

 

1
k1

2mV0
2

− k1
2 = tan k1

a
2

⎛
⎝⎜

⎞
⎠⎟
and − k1

1
2mV0
2

− k1
2

= tan k1
a
2

⎛
⎝⎜

⎞
⎠⎟

 

 
To find values of k1 for which solutions can be found we can 
examine plots of the left-hand side of each equation and the 
right-hand side of each equation.  An example is shown in the 
Figure on the right.  For this example, there are 4 eigen values.  
The corresponding eigenfunctions are shown in the Figures 
below. 
 

 
 
The Simple Harmonic Oscillator 
One important potential in many areas of physics is the harmonic oscillator.  It describes the 
potential around an equilibrium position for a divers range of systems.  When we look in the 
vicinity of the equilibrium position, we find that many potential distributions have a shape 
similar to that of the simple harmonic oscillator: 

 

V x( ) = 1
2
Cx2  

 
In classical physics, we expect that the motion associated with the harmonic oscillator has a 
frequency equal to 

 

ν =
1
2π

C
m

 

 
According to Planck, the energy associated with the harmonic oscillator is quantized and equal to 

 
En = nhν n = 0,1,2,....  
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When we solve the Schrödinger equation for the simple harmonic oscillator we find the that 
energy of the solutions can be written as 

 

En = n + 1
2

⎛
⎝⎜

⎞
⎠⎟
hν n = 0,1,2,....  

 
The biggest difference between the classical and the quantum mechanical solution is the zero-
point energy.  In the classical model, the energy of the system can be zero (n = 0); in the 
quantum mechanical model, the energy for n = 0 is hν/2.  The limit of E is due to the uncertainty 
principle. 
Consider the classical turning points for n = 0: 

 
1
2
hν =

1
2
Cx2 ⇒ x = ±

hν
C

 

 
The uncertainty in x is thus equal to 

 

Δx = hν
C

 

 
According to the uncertainty principle, the uncertainty in x produces an uncertainty in p: 

 

 
Δp ≥ 

2Δx
=

2

C
hν

 

 
The corresponding uncertainty in the energy is equal to 

 

 
ΔE = Δ

p2

2m
⎛
⎝⎜

⎞
⎠⎟
=
2pΔp
2m

≥


2

C
hν

⎛
⎝⎜

⎞
⎠⎟

2

m
=

2

4
C
hν

⎛
⎝⎜

⎞
⎠⎟

m
=

2

4
4π 2ν 2m( )
hν

⎛

⎝
⎜

⎞

⎠
⎟

m
=
1
4
hν  

 
 
 
 


