Physics 237 Notes Chapter 5

The Schrsdinger Equation

We have seen that we can describe many properties of particles in terms ®f Wevanterpret
the wave functionor the matter wave !proposed by de Brogli@s a probability distribution
that allows us to calculate the probability of finding the particle at specific pasitibne key
guestionis how do the matter wave propagate.

The Schrsdinger equation of a particle is the equatioihat allows us to calculate the wave
function ! of that particle if we provide information on the force acting on that particle (e.g. by
specifying the potential energy associated with that force). The matter wave ! proposed by de
Broglie is expected tbe a solution of the Schrsdinger equation:

¥(x,t)= sin(Zﬂ(%— vt)] =sin(kx— ot)

wherek = 2//" is thewave numberand# = 2/$ is theangular frequency. We expect that the
Schradinger equation is a differential equation. In classical physics we obtain the motion of a
particle by solvinghe following differential equation:

2
F=d—p=md—f
dt dt

The Schrsdinger equation must satisfy the following additional conditions:

1. The Schrsdinger equation must be consistent with the de Broglie and the Einstein postulates:

2. The energy associated with the wavefumttmust be consistent with the following Ron
relativistic classical relation:
p2

E=—+V
2m

3. The Schrsdinger equation ntuse linear in !. This requireshat if ! ; and ! , are solutions
thana! , +b! ,is also a solution.
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4. The potentialV may depend or and ons: V(x, t). The special case of a free particle is
obtained wherv = V. Note: a constant potential impligs= 0.

Conditions 1 and 2 can be combined to produce the following requirement:

2

ol 2 + V(x,t) =n"

We can rewrite this equation in terms of the angular frequandthe wave number and obtain

h2

2 2 |2 2
(27) (2—”] =t o S v =te
2m A 27 2m

Condition 3 requires that the Schrsdinger equation only contains terms that are proportional to !
and not terms that are proportional to for exampfe !If consider the original matter wave
I (x,t)=sin(kx" #t) and the requirement we obtainfedm conditions 1 and 2, expressed in
terms ofk and#, we conclude that the Schrsdinger equation must contain terms proportional to
the following partial differential terms:

| 2n | 2

k* term: v :I'?gﬁn(k)(#$t)'(:#kzsin(k><#$t)

$ term: ? :Wgﬁin(kx#&?t)'( = #$ cos(kx # $t)

It is easy to see that both of these differential terms are linear in !.ortter to make the
Schrsdinger equation linear in ! the potential must appear in the following way:

A reasonable guess for the Schrsdinger equation is an equation of the following form:

R o¥
- VLIJ - R —
¢ x> " P ot

To describe a free particle, the wavefunction must $&wdion of the following equation:

*Y oY
aW-l_VOlP = ﬁg

We note that the original matter wave ! is not a solution of this equation:
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! %gﬁin(kx#$t)'(+vg§in(kx#$t)'( = (# K +V) ggin(lc# $t) )

* Wggsin(kx;@tsm)'( =#*$ cos(kx # $t)

We note that already in Chapter 4 we concluded Wat,t) = sin(kx— wt) couldnOdescribe a

free particle. Consider the following wavefunction:

W (x,1) = cos(kx — ot ) + ysin(kx — ot)
If this is a solution of our proposed differential equation we must require that

2n
oK cos(kx # $t) # 9% sin(kx # $t)

I x2

= = $ sin(kx# $t) # 9% cos(kx# $t)

*

It
2u
' - +V," = #+k? cos(ke # $t) # + 9k sin(ke # $t) +V, (cos(kx # $t) + 9@in(kx # $t))

+

I'x
L= $sin(kc# $t)#, 96 cos(ke# $t)

It
(#+K2 +V, +, 96 )cos(kx# $t) + (#+9%2 + 9%, # , $ )sin(kx# $t) = 0

S~ mw

S~ mm
*

In order for! (x,r)=cos(kx" #¢)+$sin(kx" #¢) to be a solution to our differential equation

for all positionsy and all timeg we must require that

(17 k2+V,+#$9%9)=0 and (1 "$k>+8$V,! #99)=0

If we multiply the first equation witl#and subtracthe second equation we obtain

y(—akz +V,+ ,[3)/(0)— (—aykz +yV, — [)’a)) =Brio+ o= ﬁa)(yz +1) =0

Assuming that& and# are not equal to 0, this equation requires that

I2+1=0 " | =+
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With this value for % we can rewrite the first condition required in order for
I (x,t) = cos(kx" #¢)+$sn(kx" #t) to be a solution of our differential equation in the
following way:

—ok?+V, tifo=0 = -ak’®+V,=1ifw

Comparing this equation to requirement 2 for our differential equation we conclude

" k2 +V, = +i#$ % )

272 & ) "=l— and #=+%in
WK v (xi)=hs 2m

m (

If we pick the + sign fo&we obtain theschrsdinger equationfor a free particle:

! 2 ||2# ||#
) n_2 + ‘/0# = ll T
2m "x t

The solution of this equation is

! (X,t) = cos(kx" #t) +i sin(kx" #t)
Note that the + sign in front @fis a consequence of our choice of a + sign&gfor

Remarks on the Schrsdinger equation and the wave function:

1. The Schrsdinger equation is a nRmeativistic equation. We can only use it to describe
particles moving at noerelativistic velocities.

2. The wavefunction¥ (x,t) = cos(kx— wt)+isin(kx— wt) is complex. It isa computational
tool that allows us to calculate the probability of finding the particle at certain locations, but
we cannot measure the wavefunction directly.

3. The physical relevanparameter we can obtainom the catulated wavefunction is the
probability density P thatis defined asP=! "1 . | " is the complex conjugate oF .
P(x,t) dx is the probability to find the particle at timbetweerx andx + dx. In order for our
definition of P to make sense, we must require th@ wavefunction is normalized:

#P(x,t)dx = ‘#$ %(x,t)$ (x,t)dx =1
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This conditionstatesthat the particle must be somewhere between" and x = +".
UsingDirac notation the normalization condition can be rewritten as

)=t

The expressior{vf|go> denotes taking the complex conjugate of the wavefunction on the
left-handside and integrating the product#. If a is a complex constant, we carosh
that the following rules apply

|
(ot | "2)= <’1| 1> )+l )

Example:
Consider a particle thataories out simple harmonic motion The potential associated with
simpleharmonic motion only depends em@and is equal to

V(x,t):V(x):%sz

whereC is a positive constanit is assumed thahe equilibrium position is located at= 0 m.
Let us first consider the motion from a classical point of view. xTjhesition as function of time
t can be described by a sine or cosine function; a sketch is shown in the Figure on the next page.
When we examine the motion of the partiolee often m& want to knowwhat the most
probable and the least probable positiares When we examine the position as function of time
we note that the speed of the patrticle is lowest at the largest displacements; as a consequence, the
particle will spend the large fraction of its time at these positions. The speed of the particle is
the largest when it crosses the equilibrium position; as a consequence, the particle will spend the
smallest fraction of its time around its equilibrium position. We thus conclude:

1. The most probable values.ofre+A andbfA.

2. The least probable value ofs 0.
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Now consider the motion from a quantum mechanical point of view. The Schrsdinger equation
for the particle is
12 %y 1 oy

————+—CxXy =il
2m ox* 2 v ot

The solution of this wavefunction is

¥ (x,t) A (Yom/21< o (ir2) e

We can verifythat this wavefunction is a solution by substituting it in the SchrSdinger equation.

To determine the constastwe needo use the requirement thdt |/ )=1:
+$ +$ "
1= o e SR g (gl g
#$ #$
+$
#

) dx =
= A Agg )¢ gy = A A Y

45 \/\/C—m/! B

If we assume that is a real number we obtaiihe following expression fot

N \/\/\/ﬁ/! ) \/\/\/c_ _(cm)”
N E Nwm T @)”

The probabilitydistribution of the wave function is given by
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#(vemi ) _ P(x)

Comparing the probability distributions obtaine

from the classical model and the quantu - wfiTz/? o w/zT/%c x
mechanical model (see Figure on the righé) see Prx)

that the location of the most probable and the le P"?

probable pasions differ significantly for these two

models.

Predicting the future

If we know the wavefunction'(x,7) at timez = 0
we can use the Schrddinger equation to determ
I (x,t) at all times. But, does thismply that we
can predict the futurevith great accura® The
answer to this question is no. We need

" . - 0
remember that we can only measdre! . It is V2E/C V2E/C

impossible to completely determide from the measured ! . And we are thus not able to
fully specify ¥(x,0).

Expectation values
In order to examine the motion of a particle we may want to know whakgeztation valueof
its position is. The expectation valuexas defined as

4 4

X= #xP(x,t)dx = H#$ *%$ dx

This is frequently written as
() =( [x1)

If the wavefunction is ever, (x,t)=! (" x,t), the expectation value sfwill be zero. This is a
result of the fact that is odd function with respect to = 0. If the wavefunction is odd,
W¥(x,t)=-¥(—x,t), the expectation value ofwill not be equal to zero.
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The expectation value of an operafbis definedas
(0)=(¥|o¥)

Since the expectation value of an operator represents a measurable quantity, it must be real.
Even though the wavefunction are in general complex functions, the integral used to determine
the expectation value must be real

If the operator depends only on the positignthe evaluation of its expectation value is
straightforward. However, when the operator depends on the momgntihi calculation of

the expectation value is more complicated. Consider first the expectation value of

$

(p)= O p! dx

In order to evaluate this integral we need to expraasterms ofx. This is possible in classical
physics, but the uncertainly principle gmantum mechanics prevents us from expregsiag a
function ofx. In order to expresg in terms ofx ands we note thatvhen we diffeentiate the
wavefunction of a free particle with respecktae obtain

¥

— =ik¥
ox

Sincek is related to the momentupwe can rewrite this expression as

M p _ .9
a—x—l!—\P = p“P——l!a—x\P

In order to calculate the expectationpoive replace with the differential operatoy ;! ( / x)
The expectation value pfis thus equal to

(py="1i! ,Og/f’ #%' %dx:! i < ‘%" >

A similar approach has to be used when we want to deterthenexpectation value of the
energy of the particle. When we differentiate the wavefunction of a free particle with respect to
time we observe
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Since# is related to the enerdywe can rewrite this expression as

In order to calculate the expedtat of E we replaceE with the differential operator! (! /!t).
The expectation value @& is thus equal to

9 \P>

ot

In general, the expectation value of a funcfignp, r) is equal to

(f(x,p,t))= T {‘P*f[x,—iha%,t)‘l’}dx = <‘P‘f(x,—iha%,t) ‘P>

—oo

(E)= ihi[‘{‘*%w}dx = ih<‘P

Example

Consider the example of a particle that is free to move inside a box with walls locatecs?

but it not able to move in the region outside the box. The wavefunction describing this particle is
equal to

0 xé—la
2
Y(xt)= Acos(n—x)e‘ia”‘ —%a< x<%a
a
0 X=>—a

The constant must be defined such that the integral of the probability distribution is equal to 1.
Assuming that is a real number, this requires that

$ ) al2 . % 2
1= 041 dx=A? 0/60522g ax=A22 . A= %
#$ #al2 a* 2 a

The expectation value afis equal to
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$ al2

2 &x*
(x)=0fy x! dx== (y(yoszz— xdx=0
#$ #al2 a
The expectation value of is equal to
20/2 2' a3 I&Z ** 2 1&2 *
Oh ¥ dx=2 0oy S =2 Ly o4 &y
()= /bx Rl e - WAy 2 B

The mearsquare deviation af is a measure of the spread.ofalues about the expectation
value ofx and is defined using the following relation:

(! x)2 = <(x " <x>)2> = <x2 " 2x<x> + <x>2> = <x2> " <2x<x>> + (x>2 = <x2> " <x>2
The spread i is thus equal to
Av=J(Ax) = [(x2)—(x) =\/“—2(%—1J—0=\/2“—;2(%— jz0.182a

The expectation value pfis equal to

_ /.0# $. (4o ,2/ op 21 2% . 2X[ (o _
l|I ~dx=11il 1 —1co8’ sm —1xdx=0
(P)= .a/z& & ) é.'f;& ad i a0 é

The expectation value of is equal to

N TR

The spread ip is thus equal to

so= a7 = ()7 [ 22| -0-()

The product of the spread.rand the spread pmis thusequal to

I xlp= (0.182a)§?—"‘(&= 0.570% ) %h
a
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which is consistent with the uncertainty principle.

Solving the SchrSdinger equation
If we know thepotential of the system we are studying, we can use the Schrsdinger equation to
obtain the wavefunction that describes the behavior of the system.

K 9°W oY
—E axz +V(X,l’)‘{j—lh§

In order to look at solutions of this equation we will make the following assumptions:
¥ The potentiaV(x,r) does not depend on tinmeV(x,t) = V(x)
¥ The wavefunction can we rewritten 5 x,t) =y (x)o(z) .

With these assumptions the Schrsdinger equation can be rewritten as

———2+V(x)(l//(x)(p(t))=ihM =

a t differentiate

=
divide by w(x)o(t)

o1 w(x) .1 99(1)
—+V(x)—lhm7

The lefthand side of the last equation only dependst @nd the righthand side of the last
eqguation only depends on This equatio can thus only be satisfied fall x andfor all 7 if the
left- and righthand sides are equal to a constant.

121 # (x)

" 2m”" (x) #¢’

+V(x)=G and i!L#$(t)

$(r) # =G

LetOs first consider the tirdependat differential equation:

il La(p_(t):G = a(p—(t):_le(p(t)

p(t) ot ot !

The general solution of this equatiisn
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! (t) - Ae" iGt/! = e" iGt/!

Assume A=1

The time dependence of this solution can be described in terms of the angular frequency
I =G/ h. Thecorresponding frequency is equal to

,_" _13G _G

"Tox 2%l h
We can compare this frequency with the frequency that is consistent with EinsteinOs postulate:

=L
h

to conclude thaG = E whereE is the energy of the system. The tidependent component of

the wavefunction is thus given by fz)
— o IEt/!
! (t) -€ Not finite
The differential equation for the positi@ependent wavefunction
now becomes equal to
2 2
_h_;al//—g)C)+v(x):E = 0 xlo x
2my(x) ox
n 9y (x f(x)
IV ()= By () N—

This equatiorcan be rewritten as

Oy (x) _2m
o’ i

(V(x)-E)w(x)

This equation is calledthe time-independent Schrsdinger f=)

equation. The solutions to this equation are calédgerfunctions. Not continuous
The eigenfunctions have the following properties:
¥ 1 (x) anddy (x)/ dx!"#$%!&"1()*)%"(H-..1x/ ~——

¥ y(x) anddy (x)/ dx"#$%!&"1$)*0."11- #21(+, I-..Ix/
¥ ! (x) andd! (x)/dx!"#$%!&'I3+*%) #+H#$!(¥,.Ix/
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These requirementare a consequence of th
requirements that the expectation values of t
wavefunctios behave in reasonable ways
The functions shown in the Figure page 12
do not satisfy some of these conditions, a|§,'3
can thus not represent an eigenfunctions. “

V(x)

Conside the potential shown in the Figure o
the right. In the region between’ andx’’, the o0 = *
differenceV - E is negative. In the region below or abovex’’ the differenceV — E is positive.
We can lean quite a bit about the shape of the wavefunctionpbyirapthe conditions that need
to be satisfied by the eigenfunctions. Consider for the region for which’. In this region
V(x) DE > 0. If w(x)>0 theSchridinger equation requires tHat' (x)/!x*>0. If y(x)<0
the Schridinger equation requires thaty (x)/dx*<0. The same conditions apply in the
region for whichx < xO.

Now considerthe region for which’ < x < x”’. In this regionV(x) DE < 0. If ! (x)>0 the
Schrédinger equation requires that” (x)/!x*<0. If w(x)<0 the Schridinger equation
requires that > (x)/!x*>>0. )

The consequences of these conditions on the sf
of the wavefunctions are schematicallyownin the Region 1

Figure on the right. \_/

|
1
i
|
!
]
i
}
Consider the consequence of these observations ;
:
]
|
|
|
1
1
|
}
|

Region 3

-/

= x

Region 2

possible wavefunctions that are solutions of tlg
time-independent Schrsdinger ediod. The Figure
on the right shows three possible wavefunctions t| /—\
have the same value at= x,, Function # 1 has a
minimum value in the region whene> x’ and its lV(x)-El>OiIV(x)—E1<0}lV(x)-E1>0
slope will keep increasing for at positions larger I I

than this position. It is not aopsible

eigenfunctions since it will approach infinity v -

when x approaches infinity. Function # 2|\ >
will be zero in the region where> x’. At
larger positions, the slope will becom, — — ~ x
increasingly more negative and th ¥ % = \
eigenfunctions will approach minus infinity
whenx approaches infinity.Only function # '

1
|
!
1
|
|
I
]
|
|
|
|
|
t
1
{
!
1
i
{
t
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3 can be a possible eigenfunctions. This is an acceptgg@afunctionif it does nd have a
minimumat anyfinite value ofx.

The shape of theeigerfunction can also
provide us with information on the energy c
the system that is being described by 1
Consider the threeigerfunctions that are
shown in the Figure on the right. Caesi ¢
the positionx,. At this position, the values
of the eigerfunctions are all the same_
These eigerfunctions are solutions of the
time-independent Schrsdinger equation:

1

(=]
>
N

P20 ) ()

2 eE) () 5 e =2V E)" ()
] =Bk re) s (x)
( X0

This equation has to be satisfied at all positiond, tanos also at positiory. When the number
of nodes of a wavefunction increases, its maximum slope will also increase, and so will the rate
with which the slope is changing. For the three wavefunctions shown in the Figure we thus

i

2!_T(V("o’t)! El)” 1)

conclude that

#| 2n #|2n

) 3 2 2

e Ll

?_T(v(xo,t)! E,)" (%)

#I 2n

0f—1
%ﬂxz

ol X

This requires that

> >

zl_T(V(xo,t)! E3)" 3(x)
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Since the values of the wavefunctions are the same at posiaond sinceE > V at this position
(which we can conclude based on the shape of the wavefunctiasjan rewrite th last
equation in the following way:

E,—V(xy,t)>E,=V(x,.t)>E = V(x,,t) = E,;>E,>E,

The shape of the wavefunctions thus tells us quite a bit about the associated energies.
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