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The Schrödinger Equation 
We have seen that we can describe many properties of particles in terms of waves.  We interpret 
the wave function, or the matter wave Ψ proposed by de Broglie, as a probability distribution 
that allows us to calculate the probability of finding the particle at specific positions.  The key 
question is how do the matter wave propagate. 
 
The Schrödinger equation of a particle is the equation that allows us to calculate the wave 
function Ψ of that particle if we provide information on the force acting on that particle (e.g. by 
specifying the potential energy associated with that force).  The matter wave Ψ proposed by de 
Broglie is expected to be a solution of the Schrödinger equation: 

 

Ψ x,t( ) = sin 2π x
λ
−νt⎛

⎝⎜
⎞
⎠⎟

⎛
⎝⎜

⎞
⎠⎟
= sin kx −ωt( )  

 
where k = 2π/λ is the wave number and ω = 2πν  is the angular frequency.  We expect that the 
Schrödinger equation is a differential equation.  In classical physics we obtain the motion of a 
particle by solving the following differential equation: 

 

F =
dp
dt

= m d2x
dt 2

 

 
The Schrödinger equation must satisfy the following additional conditions: 
 
1. The Schrödinger equation must be consistent with the de Broglie and the Einstein postulates: 

 

λ =
h
p

ν =
E
h

 

 
2. The energy associated with the wavefunction must be consistent with the following non-

relativistic classical relation: 
 

E =
p2

2m
+V  

 
3. The Schrödinger equation must be linear in Ψ.  This requires that if Ψ1 and Ψ2 are solutions 

than aΨ1 + bΨ2 is also a solution. 
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4. The potential V may depend on x and on t: V(x, t).  The special case of a free particle is 
obtained when V = V0.  Note: a constant potential implies F = 0. 

 
Conditions 1 and 2 can be combined to produce the following requirement: 

 
h2

2mλ2
+V x,t( ) = hν  

 
We can rewrite this equation in terms of the angular frequency and the wave number and obtain 

 

 

h2

2π( )2
2m

2π
λ

⎛
⎝⎜

⎞
⎠⎟
2

+V x,t( ) = h
2π
2πν ⇔

2k2

2m
+V x,t( ) = ω  

 
Condition 3 requires that the Schrödinger equation only contains terms that are proportional to Ψ 
and not terms that are proportional to for example Ψ2.  If consider the original matter wave 
Ψ x,t( ) = sin kx −ωt( )  and the requirement we obtained from conditions 1 and 2, expressed in 
terms of k and ω, we conclude that the Schrödinger equation must contain terms proportional to 
the following partial differential terms: 

 

k2  term: ∂2Ψ
∂x2 =

∂2

∂x2 sin kx −ωt( )⎡⎣ ⎤⎦ = −k2 sin kx −ωt( )

ω  term: ∂Ψ
∂t

=
∂
∂t

sin kx −ωt( )⎡⎣ ⎤⎦ = −ω cos kx −ωt( )
 

 
It is easy to see that both of these differential terms are linear in Ψ.  In order to make the 
Schrödinger equation linear in Ψ the potential must appear in the following way: V Ψ. 
 
A reasonable guess for the Schrödinger equation is an equation of the following form: 

 

α ∂2Ψ
∂x2

+VΨ = β ∂Ψ
∂t

 

 
To describe a free particle, the wavefunction must be a solution of the following equation: 

 

α ∂2Ψ
∂x2

+V0Ψ = β ∂Ψ
∂t

 

 
We note that the original matter wave Ψ is not a solution of this equation: 
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α ∂2

∂x2
sin kx −ωt( )⎡⎣ ⎤⎦ +V sin kx −ωt( )⎡⎣ ⎤⎦ = −αk2 +V( ) sin kx −ωt( )⎡⎣ ⎤⎦ ≠

β ∂
∂t

sin kx −ωt( )⎡⎣ ⎤⎦ = −βω cos kx −ωt( )
 

 
We note that already in Chapter 4 we concluded that Ψ x,t( ) = sin kx −ωt( )  couldn’t describe a 
free particle.  Consider the following wavefunction: 

 
Ψ x,t( ) = cos kx −ωt( ) + γ sin kx −ωt( )  

 
If this is a solution of our proposed differential equation we must require that 

 
∂2Ψ
∂x2

= −k2 cos kx −ωt( ) − γ k2 sin kx −ωt( )
∂Ψ
∂t

=ω sin kx −ωt( ) − γω cos kx −ωt( )

⎫

⎬
⎪⎪

⎭
⎪
⎪

⇒

α ∂2Ψ
∂x2

+V0Ψ = −αk2 cos kx −ωt( ) −αγ k2 sin kx −ωt( ) +V0 cos kx −ωt( ) + γ sin kx −ωt( )( )

β ∂Ψ
∂t

= βω sin kx −ωt( ) − βγω cos kx −ωt( )

⎫

⎬
⎪⎪

⎭
⎪
⎪

⇒

−αk2 +V0 + βγω( )cos kx −ωt( ) + −αγ k2 + γV0 − βω( )sin kx −ωt( ) = 0

 

 
In order for Ψ x,t( ) = cos kx −ωt( ) + γ sin kx −ωt( )  to be a solution to our differential equation 
for all positions x and all times t we must require that 

 
−αk2 +V0 + βγω( ) = 0 and −αγ k2 + γV0 − βω( ) = 0  

 
If we multiply the first equation with γ and subtract the second equation we obtain 

 
γ −αk2 +V0 + βγω( ) − −αγ k2 + γV0 − βω( ) = βγ 2ω + βω = βω γ 2 +1( ) = 0  

 
Assuming that β and ω are not equal to 0, this equation requires that 

 
γ 2 +1 = 0 ⇒ γ = ±i  
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With this value for γ we can rewrite the first condition required in order for 
Ψ x,t( ) = cos kx −ωt( ) + γ sin kx −ωt( )  to be a solution of our differential equation in the 
following way: 

 
−αk2 +V0 ± iβω = 0 ⇒ −αk2 +V0 = ±iβω  

 
Comparing this equation to requirement 2 for our differential equation we conclude 

 

 

−αk2 +V0 = ±iβω
2k2

2m
+V x,t( ) = ω

⎫
⎬
⎪

⎭⎪
⇒ α = −

2

2m
and β= ± i  

 
If we pick the + sign for β we obtain the Schrödinger equation for a free particle: 

 

 
−
2

2m
∂2Ψ
∂x2

+V0Ψ = i ∂Ψ
∂t

 

 
The solution of this equation is 

 
Ψ x,t( ) = cos kx −ωt( ) + i sin kx −ωt( )  

 
Note that the + sign in front of i is a consequence of our choice of a + sign for β. 
 
Remarks on the Schrödinger equation and the wave function: 
1. The Schrödinger equation is a non-relativistic equation.  We can only use it to describe 

particles moving at non-relativistic velocities. 
2. The wavefunction Ψ x,t( ) = cos kx −ωt( ) + i sin kx −ωt( )  is complex.  It is a computational 

tool that allows us to calculate the probability of finding the particle at certain locations, but 
we cannot measure the wavefunction directly. 

3. The physical relevant parameter we can obtain from the calculated wavefunction is the 
probability density P that is defined as P = Ψ∗Ψ .  Ψ∗  is the complex conjugate of Ψ . 
P(x,t) dx is the probability to find the particle at time t between x and x + dx.  In order for our 
definition of P to make sense, we must require that the wavefunction is normalized: 

 

P x,t( )dx
−∞

∞

∫ = Ψ∗ x,t( )Ψ x,t( )dx
−∞

∞

∫ = 1  
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This condition states that the particle must be somewhere between x = -∞ and x = +∞.  
Using Dirac notation the normalization condition can be rewritten as 

 
Ψ Ψ = 1  

 
The expression ψ ϕ  denotes taking the complex conjugate of the wavefunction on the 
left-hand-side and integrating the product ψ ∗ϕ .  If a is a complex constant, we can show 
that the following rules apply 

 

ψ aϕ = a ψ ϕ

aψ ϕ = a∗ ψ ϕ

ψ ϕ ∗ = ϕ ψ

ψ +ϕ = ψ + ϕ

ψ 1 +ψ 2 ϕ1 +ϕ2 = ψ 1 ϕ1 + ψ 1 ϕ2 + ψ 2 ϕ1 + ψ 2 ϕ2

 

 
 
Example: 
Consider a particle that carries out simple harmonic motion.  The potential associated with 
simple-harmonic motion only depends on x and is equal to  

 

V x,t( ) = V x( ) = 1
2
Cx2  

 
where C is a positive constant.  It is assumed that the equilibrium position is located at x = 0 m. 
Let us first consider the motion from a classical point of view.  The x position as function of time 
t can be described by a sine or cosine function; a sketch is shown in the Figure on the next page.  
When we examine the motion of the particle, we often may want to know what the most 
probable and the least probable positions are.  When we examine the position as function of time 
we note that the speed of the particle is lowest at the largest displacements; as a consequence, the 
particle will spend the largest fraction of its time at these positions.  The speed of the particle is 
the largest when it crosses the equilibrium position; as a consequence, the particle will spend the 
smallest fraction of its time around its equilibrium position.  We thus conclude: 

1. The most probable values of x are +A and –A. 
2. The least probable value of x is 0. 
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Now consider the motion from a quantum mechanical point of view.  The Schrödinger equation 
for the particle is 

 

 
−
2

2m
∂2ψ
∂x2

+
1
2
Cx2ψ = i ∂ψ

∂t
 

 
The solution of this wavefunction is 

 

 Ψ x,t( ) = Ae− Cm /2( )x2 e− i /2( ) C /mt  
 

We can verify that this wavefunction is a solution by substituting it in the Schrödinger equation. 
To determine the constant A we need to use the requirement that ψ ψ = 1: 

 

 

Ψ Ψ = Ψ∗Ψdx
−∞

+∞

∫ = A∗e− Cm /2( )x2 e+ i /2( ) C /mt( )∗ Ae− Cm /2( )x2 e− i /2( ) C /mt( )⎡
⎣⎢

⎤
⎦⎥
dx

−∞

+∞

∫ =

= A∗A e− Cm /( )x2 dx
−∞

+∞

∫ = A∗A π

Cm / 
= 1

 

 
If we assume that A is a real number we obtain the following expression for A 

 

 
A =

Cm / 
π

=
Cm
π

=
Cm( )1/8
π( )1/4

 

 
The probability distribution of the wave function is given by 
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P x,t( ) = Ψ∗Ψ = A∗Ae− Cm /( )x2 =

=
Cm( )1/4
π( )1/2

e− Cm /( )x2  

 
Comparing the probability distributions obtained 
from the classical model and the quantum 
mechanical model (see Figure on the right) we see 
that the location of the most probable and the least 
probable positions differ significantly for these two 
models.   
 
Predicting the future 
If we know the wavefunction Ψ x,t( )  at time t = 0 
we can use the Schrödinger equation to determine 
Ψ x,t( )  at all times.  But, does this imply that we 
can predict the future with great accuracy?  The 
answer to this question is no.  We need to 
remember that we can only measure Ψ∗Ψ .  It is 
impossible to completely determine Ψ  from the measured Ψ∗Ψ . And we are thus not able to 
fully specify Ψ x,0( ) . 
 
Expectation values 
In order to examine the motion of a particle we may want to know what the expectation value of 
its position is.  The expectation value of x is defined as 

 

x = xP x,t( )dx
−∞

+∞

∫ = Ψ∗xΨdx
−∞

+∞

∫  

 
This is frequently written as 

 
x = Ψ x Ψ  

 
If the wavefunction is even, Ψ x,t( ) = Ψ −x,t( ) , the expectation value of x will be zero.  This is a 
result of the fact that x is odd function with respect to x = 0.  If the wavefunction is odd,  
Ψ x,t( ) = −Ψ −x,t( ) , the expectation value of x will not be equal to zero. 
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The expectation value of an operator O is defined as 
 

O = Ψ O Ψ  
 

Since the expectation value of an operator represents a measurable quantity, it must be real.  
Even though the wavefunction are in general complex functions, the integral used to determine 
the expectation value must be real. 
If the operator depends only on the position x, the evaluation of its expectation value is 
straightforward.  However, when the operator depends on the momentum p, the calculation of 
the expectation value is more complicated.  Consider first the expectation value of p. 

 

p = Ψ∗pΨdx
−∞

∞

∫  

 
In order to evaluate this integral we need to express p in terms of x.  This is possible in classical 
physics, but the uncertainly principle in quantum mechanics prevents us from expressing p as a 
function of x.  In order to express p in terms of x and t we note that when we differentiate the 
wavefunction of a free particle with respect to x we obtain 

 
∂Ψ
∂x

= ikΨ  

 
Since k is related to the momentum p we can rewrite this expression as 

 

 

∂Ψ
∂x

= i p

Ψ ⇒ pΨ = −i ∂

∂x
Ψ  

 
In order to calculate the expectation of p we replace p with the differential operator  −i ∂ / ∂x( ) .  
The expectation value of p is thus equal to 

 

 
p = −i Ψ∗ ∂

∂x
Ψ⎡

⎣⎢
⎤
⎦⎥
dx

−∞

∞

∫ = −i Ψ
∂
∂x

Ψ  

 
A similar approach has to be used when we want to determine the expectation value of the 
energy of the particle.  When we differentiate the wavefunction of a free particle with respect to 
time we observe 

 
∂Ψ
∂t

= −iωΨ  
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Since ω is related to the energy E we can rewrite this expression as 

 

 

∂Ψ
∂t

= −i E

Ψ ⇒ EΨ = +i ∂

∂t
Ψ  

 
In order to calculate the expectation of E we replace E with the differential operator  i ∂ / ∂t( ) .  
The expectation value of E is thus equal to 

 

 
E = i Ψ∗ ∂

∂t
Ψ⎡

⎣⎢
⎤
⎦⎥
dx

−∞

∞

∫ = i Ψ
∂
∂t

Ψ  

 
In general, the expectation value of a function f(x, p, t) is equal to 
 

 
f x, p,t( ) = Ψ∗ f x,−i ∂

∂x
,t⎛

⎝⎜
⎞
⎠⎟
Ψ⎡

⎣⎢
⎤
⎦⎥
dx

−∞

∞

∫ = Ψ f x,−i ∂
∂x
,t⎛

⎝⎜
⎞
⎠⎟
Ψ  

 
Example 
Consider the example of a particle that is free to move inside a box with walls located at x = ±a/2 
but it not able to move in the region outside the box.  The wavefunction describing this particle is 
equal to 

 

 

Ψ x,t( ) =

0 x ≤ −
1
2
a

Acos π x
a

⎛
⎝⎜

⎞
⎠⎟
e−iEt / −

1
2
a < x < 1

2
a

0 x ≥ 1
2
a

⎧

⎨

⎪
⎪
⎪

⎩

⎪
⎪
⎪

 

 
The constant A must be defined such that the integral of the probability distribution is equal to 1.  
Assuming that A is a real number, this requires that 

 

1 = Ψ∗Ψdx
−∞

∞

∫ = A2 cos2 π x
a

⎛
⎝⎜

⎞
⎠⎟
dx

−a /2

a /2

∫ = A2 a
2

⇒ A =
2
a

 

 
The expectation value of x is equal to 
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x = Ψ∗xΨdx
−∞

∞

∫ =
2
a

cos2 π x
a

⎛
⎝⎜

⎞
⎠⎟
xdx

−a /2

a /2

∫ = 0  

 
The expectation value of x2 is equal to 

 

x2 = Ψ∗x2Ψdx
−∞

∞

∫ =
2
a

cos2 π x
a

⎛
⎝⎜

⎞
⎠⎟
x2 dx

−a /2

a /2

∫ =
2
a

a3

4π 2
π 2

6
−1

⎛
⎝⎜

⎞
⎠⎟

⎛

⎝⎜
⎞

⎠⎟
=
a2

2π 2
π 2

6
−1

⎛
⎝⎜

⎞
⎠⎟

 

 
The mean-square deviation of x is a measure of the spread of x values about the expectation 
value of x and is defined using the following relation: 

 
Δx( )2 = x − x( )2 = x2 − 2x x + x 2 = x2 − 2x x + x 2 = x2 − x 2  

 
The spread in x is thus equal to 

 

Δx = Δx( )2 = x2 − x 2 =
a2

2π 2
π 2

6
−1

⎛
⎝⎜

⎞
⎠⎟
− 0 =

a2

2π 2
π 2

6
−1

⎛
⎝⎜

⎞
⎠⎟
≈ 0.182a  

 
The expectation value of p is equal to 

 

 
p = −i Ψ∗ ∂

∂x
Ψ⎡

⎣⎢
⎤
⎦⎥
dx

−a /2

a /2

∫ = −i 2
a

⎛
⎝⎜

⎞
⎠⎟

−
π
a

⎛
⎝⎜

⎞
⎠⎟
cos π x

a
⎛
⎝⎜

⎞
⎠⎟
sin π x

a
⎛
⎝⎜

⎞
⎠⎟

⎡
⎣⎢

⎤
⎦⎥
dx

−a /2

a /2

∫ = 0  

 
The expectation value of x2 is equal to 

 

 
p2 = −2 Ψ∗ ∂2

∂x2
⎛
⎝⎜

⎞
⎠⎟
Ψdx

−∞

∞

∫ = −2
2
a

−
π 2

a2
⎛
⎝⎜

⎞
⎠⎟
cos2 π x

a
⎛
⎝⎜

⎞
⎠⎟
x2 dx

−a /2

a /2

∫ =
2
a
2π 2

a2
⎛
⎝⎜

⎞
⎠⎟
a
2
=
π
a

⎛
⎝⎜

⎞
⎠⎟
2

 

 
The spread in p is thus equal to 

 

 
Δp = Δp( )2 = p2 − p 2 =

π
a

⎛
⎝⎜

⎞
⎠⎟
2

− 0 =
π
a

⎛
⎝⎜

⎞
⎠⎟

 
 

The product of the spread in x and the spread in p is thus equal to 
 

 
ΔxΔp = 0.182a( ) π

a
⎛
⎝⎜

⎞
⎠⎟
= 0.570 ≈ 1

2
  
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which is consistent with the uncertainty principle. 
 
Solving the Schrödinger equation 
If we know the potential of the system we are studying, we can use the Schrödinger equation to 
obtain the wavefunction that describes the behavior of the system. 

 

 
−
2

2m
∂2Ψ
∂x2

+V x,t( )Ψ = i ∂Ψ
∂t

 

 
In order to look at solutions of this equation we will make the following assumptions: 

• The potential V(x,t) does not depend on time t: V(x,t) = V(x) 
• The wavefunction can we rewritten as Ψ x,t( ) =ψ x( )ϕ t( ) . 

With these assumptions the Schrödinger equation can be rewritten as 
 

 

−
2

2m
∂2 ψ x( )ϕ t( )( )

∂x2 +V x( ) ψ x( )ϕ t( )( ) = i ∂ ψ x( )ϕ t( )( )
∂t

⇒
differentiate

−
2

2m
∂2ψ x( )
∂x2

⎛
⎝⎜

⎞
⎠⎟
ϕ t( ) +V x( )ψ x( )ϕ t( ) = i ∂ϕ t( )

∂t
ψ x( ) ⇒

divide by ψ x( )ϕ t( )

−
2

2m
1

ψ x( )
∂2ψ x( )
∂x2 +V x( ) = i 1

ϕ t( )
∂ϕ t( )
∂t

 

 
The left-hand side of the last equation only depends on x and the right-hand side of the last 
equation only depends on t.  This equation can thus only be satisfied for all x and for all t if the 
left- and right-hand sides are equal to a constant. 

 

 
−
2

2m
1

ψ x( )
∂2ψ x( )
∂x2

+V x( ) = G and i 1
ϕ t( )

∂ϕ t( )
∂t

= G  

 
Let’s first consider the time-dependent differential equation: 

 

 
i 1
ϕ t( )

∂ϕ t( )
∂t

= G ⇒
∂ϕ t( )
∂t

= −
i

Gϕ t( )  

 
The general solution of this equation is 
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ϕ t( ) = Ae−iGt / =

Assume A=1
e−iGt /  

 
The time dependence of this solution can be described in terms of the angular frequency 

 ω = G /  .  The corresponding frequency is equal to 
 

 
ν =

ω
2π

=
1
2π

G


⎛
⎝⎜

⎞
⎠⎟
=
G
h

 

 
We can compare this frequency with the frequency that is consistent with Einstein’s postulate: 

 

ν =
E
h

 

 
to conclude that G = E where E is the energy of the system.  The time-dependent component of 
the wavefunction is thus given by 

 

 ϕ t( ) = e−iEt /  
 

The differential equation for the position-dependent wavefunction 
now becomes equal to 

 

 

−
2

2m
1

ψ x( )
∂2ψ x( )
∂x2

+V x( ) = E ⇒

−
2

2m
∂2ψ x( )
∂x2

+V x( )ψ x( ) = Eψ x( )
 

 
This equation can be rewritten as 

 

 

∂2ψ x( )
∂x2

=
2m
2

V x( ) − E( )ψ x( )  

 
This equation is called the time-independent Schrödinger 
equation.  The solutions to this equation are called eigenfunctions.  
The eigenfunctions have the following properties: 

• ψ x( )  and dψ x( ) / dx 	
  must	
  be	
  finite	
  for	
  all	
  x. 
• ψ x( )  and dψ x( ) / dx 	
  must	
  be	
  single	
  valued	
  for	
  all	
  x. 
• ψ x( )  and dψ x( ) / dx 	
  must	
  be	
  continuous	
  for	
  all	
  x. 
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These requirements are a consequence of the 
requirements that the expectation values of the 
wavefunctions behave in reasonable ways.  
The functions shown in the Figure on page 12 
do not satisfy some of these conditions, and 
can thus not represent an eigenfunctions. 
 
Consider the potential shown in the Figure on 
the right.  In the region between x’ and x’’, the 
difference V - E is negative.  In the region below x’ or above x’’ the difference V – E is positive.  
We can lean quite a bit about the shape of the wavefunction by applying the conditions that need 
to be satisfied by the eigenfunctions.  Consider for the region for which x > x’’.  In this region 
V(x) – E > 0.  If ψ x( ) > 0  the Schrödinger equation requires that ∂2ψ x( ) / ∂x2 > 0 .  If ψ x( ) < 0  
the Schrödinger equation requires that ∂2ψ x( ) / ∂x2 < 0 .  The same conditions apply in the 
region for which x < x’. 
Now consider the region for which x’ < x < x’’.  In this region V(x) – E < 0.  If ψ x( ) > 0  the 
Schrödinger equation requires that ∂2ψ x( ) / ∂x2 < 0 .  If ψ x( ) < 0  the Schrödinger equation 
requires that ∂2ψ x( ) / ∂x2 > 0 . 
The consequences of these conditions on the shape 
of the wavefunctions are schematically shown in the 
Figure on the right. 
Consider the consequence of these observations on 
possible wavefunctions that are solutions of the 
time-independent Schrödinger equation.  The Figure 
on the right shows three possible wavefunctions that 
have the same value at x = x0.  Function # 1 has a 
minimum value in the region where x > x’ and its 
slope will keep increasing for at positions larger 
than this position.  It is not a possible 
eigenfunctions since it will approach infinity 
when x approaches infinity.  Function # 2 
will be zero in the region where x > x’.  At 
larger positions, the slope will become 
increasingly more negative and the 
eigenfunctions will approach minus infinity 
when x approaches infinity.  Only function # 
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3 can be a possible eigenfunctions.  This is an acceptable eigenfunction if it does not have a 
minimum at any finite value of x. 
 
The shape of the eigenfunction can also 
provide us with information on the energy of 
the system that is being described by it.  
Consider the three eigenfunctions that are 
shown in the Figure on the right.  Consider 
the position x0.  At this position, the values 
of the eigenfunctions are all the same.  
These eigenfunctions are solutions of the 
time-independent Schrödinger equation: 

 

 

∂2ψ x( )
∂x2

=
2m
2

V x,t( ) − E( )ψ x( ) ⇒

∂2ψ 1

∂x2 x0

=
2m
2

V x0 ,t( ) − E1( )ψ 1 x0( )

∂2ψ 2

∂x2 x0

=
2m
2

V x0 ,t( ) − E2( )ψ 2 x0( )

∂2ψ 3

∂x2 x0

=
2m
2

V x0 ,t( ) − E3( )ψ 3 x0( )

⎧

⎨

⎪
⎪
⎪
⎪

⎩

⎪
⎪
⎪
⎪

 

 
This equation has to be satisfied at all positions, and thus also at position x0.  When the number 
of nodes of a wavefunction increases, its maximum slope will also increase, and so will the rate 
with which the slope is changing.  For the three wavefunctions shown in the Figure we thus 
conclude that 

 

∂2ψ 3

∂x2 x0

⎛

⎝
⎜⎜

⎞

⎠
⎟⎟
>

∂2ψ 2

∂x2 x0

⎛

⎝
⎜⎜

⎞

⎠
⎟⎟
>

∂2ψ 1

∂x2 x0

⎛

⎝
⎜⎜

⎞

⎠
⎟⎟

 

 
This requires that 

 

 

2m
2

V x0 ,t( ) − E3( )ψ 3 x0( ) > 2m
2

V x0 ,t( ) − E2( )ψ 2 x0( ) > 2m
2

V x0 ,t( ) − E1( )ψ 1 x0( )  
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Since the values of the wavefunctions are the same at position x0 and since E > V at this position 
(which we can conclude based on the shape of the wavefunctions), we can rewrite the last 
equation in the following way: 

 
E3 −V x0 ,t( ) > E2 −V x0 ,t( ) > E1 −V x0 ,t( ) ⇒ E3 > E2 > E1  

 
The shape of the wavefunctions thus tells us quite a bit about the associated energies. 
 
 
 
 
 


