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The Schršdinger Equation 

We have seen that we can describe many properties of particles in terms of waves.  We interpret 

the wave function, or the matter wave ! proposed by de Broglie, as a probability distribution 

that allows us to calculate the probability of finding the particle at specific positions.  The key 

question is how do the matter wave propagate. 

 

The Schršdinger equation of a particle is the equation that allows us to calculate the wave 

function ! of that particle if we provide information on the force acting on that particle (e.g. by 

specifying the potential energy associated with that force).  The matter wave ! proposed by de 

Broglie is expected to be a solution of the Schršdinger equation: 
 

Ψ x,t( ) = sin 2π x
λ
−νt⎛

⎝⎜
⎞
⎠⎟

⎛
⎝⎜

⎞
⎠⎟
= sin kx −ωt( )  

 

where k = 2! /"  is the wave number and #  = 2!$   is the angular frequency.  We expect that the 

Schršdinger equation is a differential equation.  In classical physics we obtain the motion of a 

particle by solving the following differential equation: 
 

F =
dp
dt

= m d2x
dt 2

 

 

The Schršdinger equation must satisfy the following additional conditions: 

 

1. The Schršdinger equation must be consistent with the de Broglie and the Einstein postulates: 
 

! =
h
p

" =
E
h

 

 

2. The energy associated with the wavefunction must be consistent with the following non-

relativistic classical relation: 
 

E =
p2

2m
+V  

 

3. The Schršdinger equation must be linear in !.  This requires that if ! 1 and ! 2 are solutions 

than a! 1 + b! 2 is also a solution. 
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4. The potential V may depend on x and on t: V(x, t).  The special case of a free particle is 

obtained when V = V0.  Note: a constant potential implies F = 0. 

 

Conditions 1 and 2 can be combined to produce the following requirement: 
 

h2

2m! 2 +V x,t( ) = h"  

 

We can rewrite this equation in terms of the angular frequency and the wave number and obtain 
 

 

h2

2π( )2

2m
2π
λ

⎛
⎝⎜

⎞
⎠⎟

2

+V x,t( ) = h
2π

2πν ⇔
! 2k2

2m
+V x,t( ) = ! ω  

 

Condition 3 requires that the Schršdinger equation only contains terms that are proportional to ! 

and not terms that are proportional to for example !2.  If consider the original matter wave 

! x,t( ) = sin kx " # t( )  and the requirement we obtained from conditions 1 and 2, expressed in 

terms of k and # , we conclude that the Schršdinger equation must contain terms proportional to 

the following partial differential terms: 
 

k2  term:
! 2"
! x2 =

! 2

! x2 sin kx # $ t( )%& '( = #k2 sin kx # $ t( )

$  term:
! "
! t

=
!
! t

sin kx # $ t( )%& '( = #$ cos kx # $ t( )
 

 

It is easy to see that both of these differential terms are linear in !.  In order to make the 

Schršdinger equation linear in ! the potential must appear in the following way: V !.  

 

A reasonable guess for the Schršdinger equation is an equation of the following form: 
 

α ∂2Ψ
∂x2 +VΨ = β ∂Ψ

∂t
 

 

To describe a free particle, the wavefunction must be a solution of the following equation: 
 

α ∂2Ψ
∂x2

+V0Ψ = β ∂Ψ
∂t

 

 

We note that the original matter wave ! is not a solution of this equation: 
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!
" 2

"x2 sin kx # $ t( )%& '( +V sin kx # $ t( )%& '( = #! k2 +V( ) sin kx # $ t( )%& '( )

*
"
" t

sin kx # $ t( )%& '( = #* $ cos kx # $ t( )
 

 

We note that already in Chapter 4 we concluded that Ψ x,t( ) = sin kx −ωt( )  couldnÕt describe a 

free particle.  Consider the following wavefunction: 
 

Ψ x,t( ) = cos kx −ωt( ) + γ sin kx −ωt( )  
 

If this is a solution of our proposed differential equation we must require that 
 

! 2"
! x2 = #k2 cos kx # $ t( ) # %k2 sin kx # $ t( )

! "
! t

= $ sin kx # $ t( ) # %$ cos kx # $ t( )

&

'
((

)
(
(

*

+
! 2"
! x2 +V0" = #+ k2 cos kx # $ t( ) # +%k2 sin kx # $ t( ) +V0 cos kx # $ t( ) + %sin kx # $ t( )( )

,
! "
! t

= , $ sin kx # $ t( ) # , %$ cos kx # $ t( )

&

'
((

)
(
(

*

#+ k2 +V0 + , %$( )cos kx # $ t( ) + #+%k2 + %V0 # , $( )sin kx # $ t( ) = 0

 

 

In order for ! x,t( ) = cos kx " # t( ) + $ sin kx " # t( )  to be a solution to our differential equation 

for all positions x and all times t we must require that 
 

! " k2 +V0 + #$%( ) = 0 and ! " $k2 + $V0 ! #%( ) = 0  

 

If we multiply the first equation with % and subtract the second equation we obtain 
 

γ −αk2 +V0 + βγω( ) − −αγ k2 + γV0 − βω( ) = βγ 2ω + βω = βω γ 2 +1( ) = 0  

 

Assuming that & and #  are not equal to 0, this equation requires that 
 

! 2 +1= 0 " ! = ±i  
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With this value for % we can rewrite the first condition required in order for 

! x,t( ) = cos kx " # t( ) + $ sin kx " # t( )  to be a solution of our differential equation in the 

following way: 
 

−αk2 +V0 ± iβω = 0 ⇒ −αk2 +V0 = ±iβω  
 

Comparing this equation to requirement 2 for our differential equation we conclude 
 

 

! " k2 +V0 = ±i#$

2k2

2m
+V x,t( ) = $

%

&
'

(
'

) " = !
2

2m
and #= ± i  

 

If we pick the + sign for & we obtain the Schršdinger equation for a free particle: 
 

 
!

! 2

2m
" 2#
"x2

+V0# = i! "#
" t

 

 

The solution of this equation is 
 

! x,t( ) = cos kx " # t( ) + i sin kx " # t( )  
 

Note that the + sign in front of i is a consequence of our choice of a + sign for &. 

 

Remarks on the Schršdinger equation and the wave function: 

1. The Schršdinger equation is a non-relativistic equation.  We can only use it to describe 

particles moving at non-relativistic velocities. 

2. The wavefunction Ψ x,t( ) = cos kx −ωt( ) + i sin kx −ωt( )  is complex.  It is a computational 

tool that allows us to calculate the probability of finding the particle at certain locations, but 

we cannot measure the wavefunction directly. 

3. The physical relevant parameter we can obtain from the calculated wavefunction is the 

probability density P that is defined as P = ! " ! .  ! "  is the complex conjugate of Ψ . 

P(x,t) dx is the probability to find the particle at time t between x and x + dx.  In order for our 

definition of P to make sense, we must require that the wavefunction is normalized: 
 

P x,t( )dx
! "

"

# = $ % x,t( )$ x,t( )dx
! "

"

# =1  
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This condition states that the particle must be somewhere between x = -" and x = +".   

Using Dirac notation the normalization condition can be rewritten as 
 

! ! =1  
 

The expression ψ ϕ  denotes taking the complex conjugate of the wavefunction on the 

left-hand-side and integrating the product ! "# .  If a is a complex constant, we can show 

that the following rules apply 
 

! a" = a ! "

a! " = a# ! "

! " #
= " !

! + " = ! + "

! 1 +! 2 " 1 +" 2 = ! 1 " 1 + ! 1 " 2 + ! 2 " 1 + ! 2 " 2

 

 

 

Example: 

Consider a particle that carries out simple harmonic motion.  The potential associated with 

simple-harmonic motion only depends on x and is equal to  
 

V x,t( ) = V x( ) =
1
2

Cx2  

 

where C is a positive constant.  It is assumed that the equilibrium position is located at x = 0 m. 

Let us first consider the motion from a classical point of view.  The x position as function of time 

t can be described by a sine or cosine function; a sketch is shown in the Figure on the next page.  

When we examine the motion of the particle, we often may want to know what the most 

probable and the least probable positions are.  When we examine the position as function of time 

we note that the speed of the particle is lowest at the largest displacements; as a consequence, the 

particle will spend the largest fraction of its time at these positions.  The speed of the particle is 

the largest when it crosses the equilibrium position; as a consequence, the particle will spend the 

smallest fraction of its time around its equilibrium position.  We thus conclude: 

1. The most probable values of x are +A and ÐA. 

2. The least probable value of x is 0. 
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Now consider the motion from a quantum mechanical point of view.  The Schršdinger equation 

for the particle is 
 

 
−

! 2

2m
∂2ψ
∂x2

+
1
2
Cx2ψ = i! ∂ψ

∂t
 

 

The solution of this wavefunction is 
 

 Ψ x,t( ) = Ae
− Cm/2( )x2

e− i /2( ) C/mt  
 

We can verify that this wavefunction is a solution by substituting it in the Schršdinger equation. 

To determine the constant A we need to use the requirement that ! ! =1: 
 

 

! ! = ! " ! dx
#$

+$

% = A"e
# Cm/2!( )x2

e+ i /2( ) C/mt( )"

Ae
# Cm/2!( )x2

e# i /2( ) C/mt( )&

'
(

)

*
+dx

#$

+$

% =

= A" A e
# Cm/!( )x2

dx
#$

+$

% = A" A
,

Cm / !
= 1

 

 

If we assume that A is a real number we obtain the following expression for A 
 

 
A =

Cm / !
π

=
Cm

π !
=

Cm( )1/8
π !( )1/4

 

 

The probability distribution of the wave function is given by 
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P x,t( ) = ! " ! = A" Ae
# Cm/ !( )x2

=

=
Cm( )1/4

$!( )1/2
e

# Cm/ !( )x2
 

 

Comparing the probability distributions obtained 

from the classical model and the quantum 

mechanical model (see Figure on the right) we see 

that the location of the most probable and the least 

probable positions differ significantly for these two 

models.   

 

Predicting the future 

If we know the wavefunction Ψ x,t( )  at time t = 0 

we can use the Schršdinger equation to determine 

! x,t( )  at all times.  But, does this imply that we 

can predict the future with great accuracy?  The 

answer to this question is no.  We need to 

remember that we can only measure ! " ! .  It is 

impossible to completely determine !  from the measured ! " ! . And we are thus not able to 

fully specify Ψ x,0( ) . 

 

Expectation values 

In order to examine the motion of a particle we may want to know what the expectation value of 

its position is.  The expectation value of x is defined as 
 

x = xP x,t( )dx
! "

+"

# = $ %x$ dx
! "

+"

#  

 

This is frequently written as 
 

x = ! x !  
 

If the wavefunction is even, ! x,t( ) = ! " x,t( ) , the expectation value of x will be zero.  This is a 

result of the fact that x is odd function with respect to x = 0.  If the wavefunction is odd,  
Ψ x,t( ) = −Ψ −x,t( ) , the expectation value of x will not be equal to zero. 
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The expectation value of an operator O is defined as 
 

O = Ψ O Ψ  
 

Since the expectation value of an operator represents a measurable quantity, it must be real.  

Even though the wavefunction are in general complex functions, the integral used to determine 

the expectation value must be real. 

If the operator depends only on the position x, the evaluation of its expectation value is 

straightforward.  However, when the operator depends on the momentum p, the calculation of 

the expectation value is more complicated.  Consider first the expectation value of p. 
 

p = ! " p! dx
#$

$

%  

 

In order to evaluate this integral we need to express p in terms of x.  This is possible in classical 

physics, but the uncertainly principle in quantum mechanics prevents us from expressing p as a 

function of x.  In order to express p in terms of x and t we note that when we differentiate the 

wavefunction of a free particle with respect to x we obtain 
 

∂Ψ
∂x

= ikΨ  

 

Since k is related to the momentum p we can rewrite this expression as 
 

 

∂Ψ
∂x

= i p
!
Ψ ⇒ pΨ = −i! ∂

∂x
Ψ  

 

In order to calculate the expectation of p we replace p with the differential operator  ! i! " / "x( ) .  

The expectation value of p is thus equal to 
 

 
p = ! i! " # $

$x
"%

&'
(
)*
dx

! +

+

, = ! i! "
$
$x

"  

 

A similar approach has to be used when we want to determine the expectation value of the 

energy of the particle.  When we differentiate the wavefunction of a free particle with respect to 

time we observe 
 

! "
! t

= #i$"  
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Since #  is related to the energy E we can rewrite this expression as 
 

 

! "
! t

= #i E
!

" $ E" = +i! !
! t

"  

 

In order to calculate the expectation of E we replace E with the differential operator  i! ! / ! t( ) .  

The expectation value of E is thus equal to 
 

 
E = i Ψ∗ ∂

∂t
Ψ⎡

⎣⎢
⎤
⎦⎥
dx

−∞

∞

∫ = i Ψ
∂
∂t

Ψ  

 

In general, the expectation value of a function f(x, p, t) is equal to 

 

 
f x, p,t( ) = Ψ∗ f x,−i ∂

∂x
,t⎛

⎝⎜
⎞
⎠⎟
Ψ⎡

⎣⎢
⎤
⎦⎥
dx

−∞

∞

∫ = Ψ f x,−i ∂
∂x
,t⎛

⎝⎜
⎞
⎠⎟
Ψ  

 

Example 

Consider the example of a particle that is free to move inside a box with walls located at x = ±a/2 

but it not able to move in the region outside the box.  The wavefunction describing this particle is 

equal to 
 

 

Ψ x,t( ) =

0 x ≤ −
1
2

a

Acos
πx
a

⎛
⎝⎜

⎞
⎠⎟

e− iEt / −
1
2

a < x <
1
2

a

0 x ≥
1
2

a

⎧

⎨

⎪
⎪
⎪

⎩

⎪
⎪
⎪

 

 

The constant A must be defined such that the integral of the probability distribution is equal to 1.  

Assuming that A is a real number, this requires that 
 

1= ! " ! dx
#$

$

% = A2 cos2 &x
a

'
()

*
+,

dx
#a/2

a/2

% = A2 a
2

- A =
2
a

 

 

The expectation value of x is equal to 
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x = ! " x! dx
#$

$

% =
2
a

cos2 &x
a

'
()

*
+,
xdx

#a /2

a /2

% = 0 

 

The expectation value of x2 is equal to 
 

x2 = ! " x2! dx
#$

$

% =
2
a

cos2 &x
a

'
()

*
+,
x2 dx

#a /2

a /2

% =
2
a

a3

4&2

&2

6
#1

'

()
*

+,
'

()
*

+,
=
a2

2&2

&2

6
#1

'

()
*

+,
 

 

The mean-square deviation of x is a measure of the spread of x values about the expectation 

value of x and is defined using the following relation: 
 

! x( )2 = x " x( )2
= x2 " 2x x + x 2 = x2 " 2x x + x 2 = x2 " x 2  

 

The spread in x is thus equal to 
 

Δx = Δx( )2 = x2 − x 2 =
a2

2π 2

π 2

6
−1

⎛
⎝⎜

⎞
⎠⎟
− 0 =

a2

2π 2

π 2

6
−1

⎛
⎝⎜

⎞
⎠⎟
≈ 0.182a  

 

The expectation value of p is equal to 
 

 
p = ! i! " # $

$x
"%

&'
(
)*
dx

! a/2

a/2

+ = ! i!
2
a

,
-.

/
01

!
2
a

,
-.

/
01

cos
2x
a

,
-.

/
01

sin
2x
a

,
-.

/
01

%

&
'

(

)
*dx

! a/2

a/2

+ = 0  

 

The expectation value of x2 is equal to 
 

 
p2 = −! 2 Ψ∗ ∂2

∂x2

⎛
⎝⎜

⎞
⎠⎟
Ψdx

−∞

∞

∫ = −! 2 2
a

−
π 2

a2

⎛
⎝⎜

⎞
⎠⎟

cos2 π x
a

⎛
⎝⎜

⎞
⎠⎟
x2 dx

−a /2

a /2

∫ =
2
a

! 2π 2

a2

⎛
⎝⎜

⎞
⎠⎟
a
2
=

! π
a

⎛
⎝⎜

⎞
⎠⎟

2

 

 

The spread in p is thus equal to 
 

 
Δp = Δp( )2 = p2 − p 2 =

π
a

⎛
⎝⎜

⎞
⎠⎟

2

− 0 =
π
a

⎛
⎝⎜

⎞
⎠⎟

 
 

The product of the spread in x and the spread in p is thus equal to 
 

 
! x! p = 0.182a( ) "

a
#
$%

&
'(

= 0.570 )
1
2
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which is consistent with the uncertainty principle. 

 

Solving the Schršdinger equation 

If we know the potential of the system we are studying, we can use the Schršdinger equation to 

obtain the wavefunction that describes the behavior of the system. 
 

 
−
2

2m
∂2Ψ
∂x2 +V x,t( )Ψ = i ∂Ψ

∂t
 

 

In order to look at solutions of this equation we will make the following assumptions: 

¥ The potential V(x,t) does not depend on time t: V(x,t) = V(x) 

¥ The wavefunction can we rewritten as Ψ x,t( ) =ψ x( )ϕ t( ) . 

With these assumptions the Schršdinger equation can be rewritten as 
 

 

−
2

2m
∂2 ψ x( )ϕ t( )( )

∂x2 +V x( ) ψ x( )ϕ t( )( ) = i ∂ ψ x( )ϕ t( )( )
∂t

⇒
differentiate

−
2

2m
∂2ψ x( )
∂x2

⎛
⎝⎜

⎞
⎠⎟
ϕ t( ) +V x( )ψ x( )ϕ t( ) = i ∂ϕ t( )

∂t
ψ x( ) ⇒

divide by ψ x( )ϕ t( )

−
2

2m
1

ψ x( )
∂2ψ x( )
∂x2 +V x( ) = i 1

ϕ t( )
∂ϕ t( )
∂t

 

 

The left-hand side of the last equation only depends on x and the right-hand side of the last 

equation only depends on t.  This equation can thus only be satisfied for all x and for all t if the 

left- and right-hand sides are equal to a constant. 
 

 
!

! 2

2m
1

" x( )
#2" x( )

#x2
+V x( ) =G and i! 1

$ t( )
#$ t( )

#t
=G  

 

LetÕs first consider the time-dependent differential equation: 
 

 
i!

1
ϕ t( )

∂ϕ t( )
∂t

= G ⇒
∂ϕ t( )
∂t

= −
i
!

Gϕ t( )  

 

The general solution of this equation is 
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! t( ) = Ae" iGt / ! =

Assume A=1
e" iGt / !  

 

The time dependence of this solution can be described in terms of the angular frequency 

 ! =G /  .  The corresponding frequency is equal to 
 

 
! =

"
2#

=
1

2#
G
!

$
%&

'
()

=
G
h

 

 

We can compare this frequency with the frequency that is consistent with EinsteinÕs postulate: 
 

! =
E
h

 

 

to conclude that G = E where E is the energy of the system.  The time-dependent component of 

the wavefunction is thus given by 
 

 ! t( ) = e" iEt /!  
 

The differential equation for the position-dependent wavefunction 

now becomes equal to 
 

 

−
2

2m
1

ψ x( )
∂2ψ x( )
∂x2

+V x( ) = E ⇒

−
2

2m
∂2ψ x( )
∂x2

+V x( )ψ x( ) = Eψ x( )
 

 

This equation can be rewritten as 
 

 

∂2ψ x( )
∂x2 =

2m
2 V x( ) − E( )ψ x( )  

 

This equation is called the time-independent Schršdinger 

equation.  The solutions to this equation are called eigenfunctions.  

The eigenfunctions have the following properties: 

¥ ! x( )  and dψ x( ) / dx!"#$%!&'!()*)%'!(+,!-..!x/ 

¥ ψ x( )  and dψ x( ) / dx !"#$%!&'!$)*0.'!1-.#'2!(+, !-..!x/ 

¥ ! x( )  and d! x( ) / dx!"#$%!&'!3+*%)*#+#$!(+,!-..!x/ 
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These requirements are a consequence of the 

requirements that the expectation values of the 

wavefunctions behave in reasonable ways.  

The functions shown in the Figure on page 12 

do not satisfy some of these conditions, and 

can thus not represent an eigenfunctions. 

 

Consider the potential shown in the Figure on 

the right.  In the region between x’ and x’’, the 

difference V - E is negative.  In the region below x’ or above x’’ the difference V – E is positive.  

We can lean quite a bit about the shape of the wavefunction by applying the conditions that need 

to be satisfied by the eigenfunctions.  Consider for the region for which x > x’’.  In this region 

V(x) Ð E > 0.  If ψ x( ) > 0  the Schršdinger equation requires that ! 2" x( ) / ! x2 > 0 .  If ψ x( ) < 0 

the Schršdinger equation requires that ∂2ψ x( ) / ∂x2 < 0 .  The same conditions apply in the 

region for which x < xÕ. 

Now consider the region for which x’ < x < x’’.  In this region V(x) Ð E < 0.  If ! x( ) > 0 the 

Schršdinger equation requires that ! 2" x( ) / ! x2 < 0 .  If ψ x( ) < 0  the Schršdinger equation 

requires that ! 2" x( ) / ! x2 > 0 . 

The consequences of these conditions on the shape 

of the wavefunctions are schematically shown in the 

Figure on the right. 

Consider the consequence of these observations on 

possible wavefunctions that are solutions of the 

time-independent Schršdinger equation.  The Figure 

on the right shows three possible wavefunctions that 

have the same value at x = x0.  Function # 1 has a 

minimum value in the region where x > x’ and its 

slope will keep increasing for at positions larger 

than this position.  It is not a possible 

eigenfunctions since it will approach infinity 

when x approaches infinity.  Function # 2 

will be zero in the region where x > x’.  At 

larger positions, the slope will become 

increasingly more negative and the 

eigenfunctions will approach minus infinity 

when x approaches infinity.  Only function # 
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3 can be a possible eigenfunctions.  This is an acceptable eigenfunction if it does not have a 

minimum at any finite value of x. 

 

The shape of the eigenfunction can also 

provide us with information on the energy of 

the system that is being described by it.  

Consider the three eigenfunctions that are 

shown in the Figure on the right.  Consider 

the position x0.  At this position, the values 

of the eigenfunctions are all the same.  

These eigenfunctions are solutions of the 

time-independent Schršdinger equation: 
 

 

! 2" x( )
! x2 =

2m
2 V x,t( ) # E( )" x( ) $

! 2" 1

! x2
x0

=
2m
2 V x0,t( ) # E1( )" 1 x0( )

! 2" 2

! x2
x0

=
2m
2 V x0,t( ) # E2( )" 2 x0( )

! 2" 3

! x2
x0

=
2m
2 V x0,t( ) # E3( )" 3 x0( )

%

&

'
'
'
'

(

'
'
'
'

 

 

This equation has to be satisfied at all positions, and thus also at position x0.  When the number 

of nodes of a wavefunction increases, its maximum slope will also increase, and so will the rate 

with which the slope is changing.  For the three wavefunctions shown in the Figure we thus 

conclude that 
 

! 2" 3

! x2
x0

#

$
%%

&

'
((

>
! 2" 2

! x2
x0

#

$
%%

&

'
((

>
! 2" 1

! x2
x0

#

$
%%

&

'
((

 

 

This requires that 
 

 

2m
! 2 V x0,t( ) ! E3( )" 3 x0( ) >

2m
! 2 V x0,t( ) ! E2( )" 2 x0( ) >

2m
! 2 V x0,t( ) ! E1( )" 1 x0( )  
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Since the values of the wavefunctions are the same at position x0 and since E > V at this position 

(which we can conclude based on the shape of the wavefunctions), we can rewrite the last 

equation in the following way: 
 

E3 −V x0 ,t( ) > E2 −V x0 ,t( ) > E1 −V x0 ,t( ) ⇒ E3 > E2 > E1  
 

The shape of the wavefunctions thus tells us quite a bit about the associated energies. 

 

 

 

 

 


