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In Chapter 1, the birth of quantum mechanics is described.  Many consider Max Planck the 
father of quantum mechanics.  On December 14, 1900 he proposed that the energy of any system 
that exhibits a time dependence characterized by an oscillatory frequency ν is quantized in the 
following way 

 
! = nh" n = 0,1,2,3,...  

 
where h is a universal constant called Planck’s constant (h = 6.63 × 10-34 Js).  Max Planck 
showed that this proposal was required to solve the ultra-violet catastrophe.  In 1918, Max 
Planck received the Nobel Prize of Physics for this work. 
 
It was clear at that time that classical physics was breaking down: 
• Relativity: describes physics at high velocities (comparable to the speed of light). 
• Quantum Mechanics: describes physics at small dimensions. 
At low velocities and large dimensions, relativity and quantum mechanics approach classical 
physics. 
 
Blackbody radiation contributed to the breakdown of classical physics.  Blackbody radiation is 
the thermal radiation emitted by a body that absorbs all incident radiation.  The thermal radiation 
emitted by any body has the following properties: 
• The thermal radiation is independent of the material. 
• The thermal radiation depends strongly on the temperature T. 
• If the temperature T increases, the radiated energy and the frequency of the most intense 

radiation both increase. 
The thermal radiation emitted by a blackbody is often specified in terms of the spectral 
radiance RT(ν)dν  which is the energy emitted per unit time per unit area with a frequency 
between ν and ν + dν.  The total radiance RT is obtained by integrating the spectral radiance over 
all frequencies: 

 

RT = RT !( )d!
0

"

#  
 

Experiments show that RT is proportional to T4.  This relation is known as Stephan’s law: 
 

RT = !T 4  
 

where σ = 5.67 × 10-8 W/(m2K4) is the Stefan-Boltzmann constant. 
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Now consider a blackbody.  A blackbody is a body that absorbs all radiation that is incident on 
it.  Since all incident radiation is absorbed, the emitted radiation depends only on the thermal 
emission properties of the body.  
A good approximation of a blackbody is a cavity with a hole (see 
Figure on the right).  The hole acts like a blackbody since: 
• Radiation falling onto it from the outside will scatter in the 

cavity until being absorbed.  All incident radiation is thus 
absorbed. 

• The only radiation leaving the hole must be blackbody 
radiation (per definition) and we thus conclude that the cavity 
contains blackbody radiation that depends only on T and not 
on the material of the cavity. 

In order to predict the properties of the radiation leaving the hole, we need to explore the 
properties of the radiation in the cavity.  The energy of the thermal radiation with a frequency 
between ν and ν + dν per unit volume inside the cavity is equal to the product of the number of 
electromagnetic waves per unit volume with a frequency between ν and ν + dν and the average 
energy of each wave.  The classical and the quantum mechanical picture differ on the 
energy of each wave. 
Let us first consider the classical picture.  For a one-dimensional cavity with conducting walls at 
x = 0 and x = a, we must require that the electric field of the electromagnetic (EM) wave at x = 0 
and at x = a must be zero at all times: 

 
E 0,t( ) = E a,t( ) = 0  

 
This can only happen if the electric field is described by a standing wave: 

 

E x,t( ) = E0 sin
2! x
"

#
$%

&
'(
sin 2!)t( )  

 
With this definition of the electric field, the electric field at x = 0 is zero at all times.  In order for 
the electric field to be zero at x = a the following condition must be met: 

 

sin 2!a
"
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"

= n! )
2a
"

= n where n = 1, 2, 3, 4, .....  

 
Since the wavelength of the EM wave and its frequency are related (ν = c/λ), the wavelength 
requirement of the standing wave can be expressed in terms of a frequency requirement: 
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2a
!

=
2a
c
" = n where n = 1, 2, 3, 4, .....  

 
This relation can be used to determine the number of states (or the number of distinct EM waves) 
with a frequency between ν1 and ν2: 

 

n2 ! n1 =
2a
c

"2 !"1( )  

 
This relation is correct for one particular polarization of the EM wave.  In a one-dimensional 
cavity there are two independent polarization directions and the number of states we need to 
consider is thus double the number of states calculated above.  Thus: 

 

n2 ! n1 =
4a
c

"2 !"1( )  

 
Over a small frequency interval, this equation can be rewritten as 

 

N !( )d! =
4a
c
d!  

 
 
How does this calculation change when we 
consider 3 dimensions?  Any EM wave in three 
dimensions can be represented by a set of 3 n 
values and correspond to a point (nx, ny, nz) in the 
coordinate system shown in the Figure.  The 
frequency of the EM wave is related to the 
distance r of that point and the origin of the 
coordinate system: 

 

! =
cr
2a  

 
The density of states in the coordinate system used 
in Figure is 1 state per unit volume.  The number 
of waves with a frequency between ν and ν + dν is 
thus equal to the volume between 1/8th of a sphere 
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of radius r and a sphere of radius r + dr: 
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Since each wave can have two polarizations, the number of states with a frequency between ν 
and ν + dν can now be determined and is equal to 

 

N !( )d! = 8" a
c

#
$%
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! 2d! =
8"
c3
a3! 2d! =

8"
c3
V! 2d!  

 
where V is the volume of the cavity. 
In Physics 141 we showed that the average kinetic energy per degree of freedom is kT/2.  The 
total energy of a system carrying out sinusoidal motion, such as a pendulum or and EM wave, is 
twice the average kinetic energy and it thus equal to kT.  The energy density per unit volume of 
EM waves with frequencies between ν and ν + dν is thus equal to 

 

!T "( )d" =
N "( )d"

V
kT =

8#" 2kT
c3

d"  

 
This relation is known as the Rayleigh-Jeans formula for blackbody radiation. 
 
The classical theory thus 
predicts that the energy 
density is proportional to the 
square of the frequency.  This 
prediction differs from the 
experimental results that 
show the energy density 
approaches 0 at high 
frequencies.  This problem is 
known as the ultraviolet 
catastrophe. 
In order to solve the ultraviolet catastrophe, Planck proposed that the assumption that the average 
total energy of an EM wave is kT, independent of frequency, couldn’t be correct.  He concluded 
that at high frequencies, the total energy of an EM wave must approach 0.  The frequency 
independence of the average total energy of the EM wave is a consequence of the equipartition 



Physics 237  Notes Chapter 1 

   
January 18, 2011  Page 5 of 6 

law of statistical mechanics.  The equipartition law states that the probability to find a system 
with an energy between ε and ε + dε is equal to 

 

P !( )d! = e"! /kT

kT
 

 
The corresponding average energy of the system is equal to 
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P !( )! d!
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Planck proposed that the energy of the EM 
wave is quantized, and that the energy can 
only take on values that are multiple of hν: 

 
! = nh" n = 0,1,2,3,...  

 
When the energy is quantized, the integrals 
used to calculate the average energy of the 
EM wave are replaced by an infinite sum over 
n.  For low frequencies, the average energy 
will still approach kT and in this frequency 
regime, the classical theory agrees with the 
experimental results.  At higher frequencies, 
the area under ε P(ε) decreases and the 
average energy of the EM wave thus 
decreases.  Note: the sum over P(ε) still must 
be equal to 1 since the probability distribution 
must be properly normalized.  With this 
assumption, the average energy of the EM 
wave is found to be equal to 
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The average energy thus has the required behavior: 
 

• At low frequencies: ! "
#"0
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• At high frequencies: ! "
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The energy density of EM waves is thus given by 

 

!T "( )d" =
N "( )d"

V
# =

8$" 2

c3
h"

eh" /kT %1
d" =

8$h
c3

" 3

eh" /kT %1
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Using the relation between wavelength and frequency (ν = c/λ and dν = -(c/λ2)dλ) we can 
convert this relation to Planck’s blackbody formula: 

 

!T "( )d" =
8#hc
"5

d"
ehc /"kT $1

 

 
This relation describes the observed 
blackbody spectrum extremely well, as 
can be seen in the Figure on the right. 
By integrating over all wavelengths we 
obtain Stephan’s law and a relation 
between Stefan-Boltzmann constant and 
the Planck and Boltzmann constants.  By 
differentiating the energy density with 
respect to the wavelength and with 
respect to the frequency, we can 
determine the wavelength and the 
frequency at which the energy density 
peaks. 
 
We thus conclude that one can only understand blackbody radiation if the energy of an EM wave 
is quantized and equal to nhν where n = 0, 1, 2, 3, …..  The quantization of energy was 
introduced to explain continuous distributions. 


