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Exam # 3

• Exam # 3 will take place on Tuesday December 7 at 8.00 am
– 9.30 am in B&L 109.

• The exam will cover the material in Chapters 8 – 10.

• The exam will have 4 questions:

• Three questions will be analytical questions.

• One question will be a conceptual question (including concepts
related to the Yankees or the Netherlands).

• You will be provided with an equation sheet.
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Time management

• Work no more than 10 – 15 minutes on each problem.

• Even if not finished, move on to the next problem.

• This will leave 15 minutes at the end to finish your problems
and/or make correction.

• We can only give credit for what you write (not what you
think).

• We can only give credit for what we can read (write neatly).
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Warning.

• I cannot cover everything I discussed in lectures 12 – 17 in
this review.

• If I skip over certain topics, it does not mean you should not
understand that material.

• Your TAs will not see the exam until you see it.

•NOTE: answer the correct question in the correct booklet.
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Overview

• Chapter 8: Central-Force Motion.
• Sections 8.9 and 8.10 are not included.

• Chapter 9: Dynamics of System of Particles.

• Chapter 10: Motion in Noninertial Reference Frames.
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Chapter 8.



Frank L. H. Wolfs Department of Physics and Astronomy, University of Rochester, Slide 7

Chapter 8.
Central-Force Motion.

• Many important problems in physics involve the motion of
two bodies with a central force acting between them.

• Assume the potential depends on the position between the
two objects.

• The Lagrangian can be written in terms of the coordinates of
the two masses:

• Or in terms of their relative position:

• Note: 2-body problem has been reduced to a one-body
problem.

L = 1
2
m1 !r1

2
+ 1
2
m2
!r2
2
−U r1 − r2( )

L = 1
2
µ !r 2 −U r( )
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Changing a 2-body problem into a 1-body 
problem.
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Conservation of angular momentum.
Spherical symmetry: U only depends on r.

Starting from the Lagrangian:

we define the generalized momenta:

The time derivatives of the generalized momenta are:

L = 1
2
µ !r2 + r2 !θ 2( )−U r( )

pr =
∂L
∂!r

= µ!r

pθ =
∂L
∂ !θ

= µr2 !θ

!pr =
d
dt

∂L
∂!r

= ∂L
∂r

= µr !θ 2 − ∂U
∂r

!pθ =
d
dt

∂L
∂ !θ

= ∂L
∂θ

= 0
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Two-Body Central-Force Motion.

• For two-body central force problems, we showed:
• Angular momentum was a conserved quantity.
• Kepler’s second law is a direct consequence of conservation of
angular momentum.
• Since the Lagrangian does not depend explicitly on time, energy is
conserved.

E = T +U = 1
2
µ !r2 + r2 !θ 2( )+U r( ) = 1

2
µ !r2 + r2 l

µr2
⎛
⎝⎜

⎞
⎠⎟

2⎛

⎝
⎜

⎞

⎠
⎟ +U r( ) =

= 1
2
µ !r2 + 1

2
l2

µr2
+U r( )

Modification to the potential energy.
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The “effective” potential.

• The effective potential is
composed of the real
potential and the centrifugal
potential energy.

• Observations:

• The effective potential may
show a dip that indicates that
for certain energies, the orbit is
bound.
• For small distances, the
effective force becomes
repulsive.
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Orbital motion: orbital properties.

• Properties of the orbits can be found by solving the
following integrals:

t = dt∫ = ± 1
2
µ
E −U r( )( )− l2

µ2r2

dr∫

θ r( ) =
!θ
!r
dr∫ = ± l

r2 2µ E −U − l2

2µr2
⎛
⎝⎜

⎞
⎠⎟

dr∫



Frank L. H. Wolfs Department of Physics and Astronomy, University of Rochester, Slide 13

Orbital motion: orbital properties (shape).

•Properties:
• E > 0: Hyperbola
• E = 0: Parabola
• Vmin < E < 0: Ellipse
• E = Vmin: Circle
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Problem 8.10

• Assume Earth’s orbit to be circular and that the Sun’s mass
suddenly decreases by half? What orbit does the Earth then
have?
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Chapter 9.
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Center of Mass

•Definitions of center of
mass:
• Discrete mass 

distribution:

• Continuous mass 
distribution:

Rcm =
miri

i
∑

mi
i
∑

= 1
M

miri
i
∑

Rcm = 1
M

r dm∫
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Linear Momentum.

•Linear momentum:

P = mi
!ri

i
∑ = d

dt
miri

i
∑ =

= d
dt

MR( ) = M !R
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Angular Momentum.

•Angular momentum:

L = Lα
α
∑ = rα ×mα

!rα{ }
α
∑ =

= R + r 'α( )×mα
!R + !r 'α( ){ }

α
∑

L = R × !R( ) mα
α
∑ + r 'α × p 'α{ }

α
∑ =

= R × P + Lα ,wrt ,cm
α
∑ = Lcm + Lwrt ,cm



Frank L. H. Wolfs Department of Physics and Astronomy, University of Rochester, Slide 19

Collisions.
Laboratory and Center-of-Mass Frames.
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Impact parameter and scattering angle.
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Impact parameter and scattering angle.
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Problem 9.40.

A particle of mass m1 and velocity u1, strikes head-on a
particle of mass m2 at rest. The coefficient of restitution is e.

Particle m2 is tied to a point a distance a away, as shown in
the Figure. Find the velocity (magnitude and direction) of m1
and m2 after the collision.
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Chapter 10.
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Rotating Coordinate system.

Rotating frame

Fixed frame
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The angular acceleration is the same in both 
reference frames.

• Relation between position vectors:

• Relation between angular velocity vectors:

• Conclusion: the angular acceleration is the same in both
reference frames.

dr
dt

⎛
⎝⎜

⎞
⎠⎟ fixed

= dr
dt

⎛
⎝⎜

⎞
⎠⎟ rotating

+ω × r

dω
dt

⎛
⎝⎜

⎞
⎠⎟ fixed

= dω
dt

⎛
⎝⎜

⎞
⎠⎟ rotating

+ω ×ω = dω
dt

⎛
⎝⎜

⎞
⎠⎟ rotating
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Velocity in fixed (inertial ) frame.

vf =
dr '
dt

⎛
⎝⎜

⎞
⎠⎟ fixed

= dR
dt

⎛
⎝⎜

⎞
⎠⎟ fixed

+ dr
dt

⎛
⎝⎜

⎞
⎠⎟ rotating

+ω × r =V + vr +ω × r

Velocity in fixed frame.

Velocity in rotating frame.

Velocity of the origin of the rotating frame.
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Newton’s laws in rotating reference frames.

• Only in the fixed reference frame can we use Newton’s
second law:

• The acceleration in the fixed reference frame can also be
expressed as:

af =
dvf
dt

⎛
⎝⎜

⎞
⎠⎟ fixed

= F
m

af =
dV
dt

⎛
⎝⎜

⎞
⎠⎟ fixed

+ dvr
dt

⎛
⎝⎜

⎞
⎠⎟ rotating

+ 2ω × vr + !ω × r +ω × ω × r{ }

Acceleration observed in rotating frame. 
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The effective force.

Using the effective force

an observer in the rotating frame will be able to determine the
acceleration in the rotating frame by dividing the effective
force by the mass of the object.

Coriolis force.

Centripetal force.

Feff = maf −m !ω × r − 2mω × vr −mω × ω × r{ }
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The centripetal force.

• The Earth is not a good
inertial reference frame.

• The biggest “non-inertial”
effect is due to the daily
rotation around its axis.

• We use a rotating xyz
frame, fixed on the surface
of the Earth, and a fixed
inertial reference frame
x’y’z’ whose origin is
located at the center of the
Earth.

Inertial frame

Rotating frame
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Examples of rotating coordinate systems.

z and z’ parallel.  xy plane 
parallel to x’y’ plane.

z parallel to x’y’ plane. y
directed radially. xy plane 
tangential to surface.

w directed 
along z axis.

w directed in 
xy plane.
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Problem 10.8.

If a particle is projected
vertically upward to a
height h above the
Earth’s surface at a
northern latitude l, how
far from its launch
position does it hit the
ground?

Neglect air resistance
and consider only small
vertical heights.
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ENOUGH FOR TODAY?


