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Exam # 2

• Exam # 2 will take place on Tuesday October 26 at 8 am in
B&L 109.

• The exam will cover the material in Chapters 5 – 7.

• The exam will have 4 questions:

• Three questions will be analytical questions.

• One question will be a conceptual questions.

• You will be provided with an equation sheet (the same one
used for Exam # 1).
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Time management

• Work no more than 10 – 15 minutes on each problem.

• Even if not finished, move on to the next problem.

• This will leave 15 minutes at the end to finish your problems
and/or make correction.

• We can only give credit for what you write (not what you
think).

• We can only give credit for what we can read (write neatly).



Frank L. H. Wolfs Department of Physics and Astronomy, University of Rochester, Slide 4

Warning.

• I cannot cover everything I discussed in lectures 7 – 11 in
this review.

• If I skip over certain topics, it does not mean you should not
understand that material.

• Your TAs will not see the exam until you see it.

•NOTE: answer the correct question in the correct booklet.
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Overview

• Chapter 5: Gravitation.

• Chapter 6: Calculus of Variations.

• Chapter 7: Lagrangian and Hamiltonian Dynamics.
• Note: Sections 7.12 and 7.13 are not included.
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Chapter 5.
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The gravitational force between point 
particles.
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Gravitational Potential

• Gravitational potential:

• Gravitational potential due to a point mass:

• Gravitational potential due to a continuous mass
distribution:

• Note: the gravitational potential is a scalar.

!g = −
!
∇Φ

Φ = −G M
r

Φ = −G ρ !r '( )
r '

dv '
V
∫
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Poisson’s Equation.

• Gravitational flux due to a
point mass m:

• When we have a mass
distribution inside S:

• This relation can be used to
show that the gravitational
potential satisfies the
following equation:

Φgrav = −4πGm

Φgrav = −4πG ρ dv
V
∫

!
∇2Φ = 4πGρ
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Shell theorem.
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Use symmetry to calculate the net force.

• Calculate 
the force 
directly.

• Calculate 
the potential 
energy and 
then 
determine 
the force.
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Chapter 6.
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Calculus of Variations: find the path y(x) that 
minimizes a path integral.
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First version of Euler’s equation.

• Goal: minimize the path integral of a function f :

• Note: x does NOT have to be a position; it can be time.

• The function f that minimizes J must satisfy the following
requirement:

• This is the first version of Euler’s equation.

∂ f
∂y

− d
dx

∂ f
∂y '

⎛
⎝⎜

⎞
⎠⎟
= 0

J = f y α ,x( ) ,y ' α ,x( ) ;x( )dx
x1

x2

∫
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Euler’s equation with more than one 
dependent variable.

• Consider the function f which depends on several dependent
variables y1, y2, y3, etc.

• In this case, to minimize the path integral of f, the dependent
variables must satisfy the following conditions:

∂ f
∂yi

− d
dx

∂ f
∂yi '

⎛
⎝⎜

⎞
⎠⎟
= 0
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Second version of Euler’s equation.

• A second version of Euler’s equation is useful when f does
not explicitly depend on x.

• The second version of Euler’s equation is:

• When f does not explicitly depend on x, this equation
becomes:

∂ f
∂x

− d
dx

f − y ' ∂ f
∂y '

⎛
⎝⎜

⎞
⎠⎟
= 0

f − y ' ∂ f
∂y '

= constant
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Euler’s equations with constraints.

• Consider path constraints: g{y, z; x} = 0.
• Euler’s equations are now:

• The function l(x) is the Lagrange undetermined
multiplier.

∂ f
∂y

− d
dx

∂ f
∂y '

⎛
⎝⎜

⎞
⎠⎟

⎛
⎝⎜

⎞
⎠⎟
+ λ x( ) ∂g

∂y
⎛
⎝⎜

⎞
⎠⎟
= 0

∂ f
∂z

− d
dx

∂ f
∂z '

⎛
⎝⎜

⎞
⎠⎟

⎛
⎝⎜

⎞
⎠⎟
+ λ x( ) ∂g

∂z
⎛
⎝⎜

⎞
⎠⎟ = 0
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Problem 6.16

• What curve on the surface z = x3/2 joining the points (x, y, z)
= (0, 0, 0) and (1, 1, 1) has the shortest arc length?
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Chapter 7.
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Hamilton’s Principle – Part 1.

" Of all the possible paths along which a dynamical system
may move from one point to another within a specified time
interval (consistent with any constraints), the actual path
followed is that which minimizes the time integral of the
difference between the kinetic and potential energies. "

The quantity T - U is called the Lagrangian L.

δ T −U( )dt
t1

t2

∫ = 0
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Hamilton’s Principle – Part 2.

• Hamilton’s principle: " Of all the possible paths along
which a dynamical system may move from one point to
another in configuration space within a specified time
interval (consistent with any constraints), the actual path
followed is that which minimizes the time integral of the
Lagrangian function for the system. "

•Note: the generalized coordinates q are coordinates that
completely specify the state of the system. They do not
need to be coordinates of a coordinate system.

δ L qi , !qi ,t( )dt
t1

t2

∫ = 0



Frank L. H. Wolfs Department of Physics and Astronomy, University of Rochester, Slide 22

Lagrange Equation(s) of Motion.

∂L
∂qi

− d
dt

∂L
∂ !qi

= 0
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Lagrange’s equations with undetermined 
multipliers.

• Assume the constraints can be expressed in differential
form:

• The constraints can be incorporated into the Lagrange
equations:

• The forces of constraint can be determined from the
equations of constraint and the Lagrange multipliers:

∂ fk
∂qj

dqj
j=1

s

∑ = 0

Qj = λk t( ) ∂ fk
∂qjk=1

m

∑

∂L
∂qj

− d
dt

∂L
∂ !qj

+ λk t( ) ∂ fk
∂qjk=1

m

∑ = 0
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Generalized coordinates.

• So far we have expressed the Lagrangian in terms of
(generalized) position and (generalized) velocities:

• An alternative is to express the Lagrangian in terms of
(generalized) position and (generalized) momenta. For
example:

L = T −U = 1
2
m !xi

2

i=1

3

∑ −U xi( )

pr =
∂L
∂ !r

= ∂T
∂ !r

= m!r

pθ =
∂L
∂ !θ

= ∂T
∂ !θ

= mr2 !θ
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Conservation laws – Part I.

• Conservation of energy:
• Lagrangian does not depend on time explicitly.
• If L does not depend explicitly on time, it can be shown that

• The constant H is called the Hamiltonian of the system:

L − !qj
∂L
∂ !qj

⎛

⎝⎜
⎞

⎠⎟j
∑ = constant = -H

H = !qj
∂L
∂ !qj

⎛

⎝⎜
⎞

⎠⎟j
∑ − L
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Conservation Laws – Part II.

• Conservation of linear momentum:
• Lagrangian should not be effected by a translation of space.

• Conservation of angular momentum:
• Lagrangian should not be effected by a rotation of space.
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Canonical equations of motion.

Lagrange equations of motion in terms of generalized
momentum:

The Hamiltonian H can be written in terms of the generalized
momenta as

d
dt

∂L
∂ !qi

= !pi =
∂L
∂qi

H = !qj
∂L
∂ !qjj

∑ − L = !qj pj
j
∑ − L
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Hamilton’s Equations of Motion

• For each coordinate: two equations of motion.
• For each coordinate there is only one Lagrange equation of motion.

• Equations of motion are first order differential equations.
• The Lagrange equations of motion are second order differential
equations.

∂H
∂pj

− !qj = 0

∂H
∂qj

+ !pj = 0

∂H
∂t

+ ∂L
∂t

= 0
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Problem 7.10.

• Two blocks of mass M are
connected by a uniform string
of length l. One block is places
on a smooth horizontal surface
and the other blocks hangs over
the side, the string passing over
a frictionless pulley. Describe
the motion of the system (a)
when the mass of the string is
negligible and (b) when the
string has a mass m.
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ENOUGH FOR TODAY?


