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Exam # 1

• Exam # 1 will take place on Thursday September 23 at 8.00
am in B&L 109.

• The exam will cover the material in Chapters 1 – 4.

• The exam will have 4 questions:

• Three questions will be analytical questions.

• One question will be a conceptual question (including concepts
related to the Yankees or the Netherlands or KLM).

• You will be provided with an equation sheet.
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Good to know for Exam # 1.
Soo much below sea level.

The Dutch measure water level
in units of NAP:

Nieuw Amsterdams Peil.
Used in most of Western Europe
to measure water levels.
You can no longer trust sea levels
but you can trust the level of 
Amsterdam.
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Preparing for Exam # 1

• Take the practice exam as if it was a real exam: take 90
minutes to complete it. Compare your work to the posted
solutions to help you focus on specific areas.

• Recitations on Tuesday are Q&A sessions. Come prepared
with your questions and get answers. Everyone can attend
any or all of the recitations on Tuesday.

• Office hours this week:
• Frank Wolfs: Tuesday 1.30 pm – 3 pm and Wednesday 1 pm – 2 pm.
• Elizabeth Champion: Tuesday 3 pm – 4 pm.
• Margaret Porcelli: Wednesday 5 pm – 6 pm.



Frank L. H. Wolfs Department of Physics and Astronomy, University of Rochester, Slide 5

Time management

• Work no more than 10 – 15 minutes on each problem.

• Even if not finished, move on to the next problem.

• This will leave 30 minutes at the end to finish your problems
and/or make correction.

• We can only give credit for what you write (not what you
think).

• We can only give credit for what we can read (write neatly).
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Warning.

• I cannot cover everything I discussed in lectures 1 – 6 in this
review.

• If I skip over certain topics, it does not mean you should not
understand that material.

• Your TAs will not see the exam until you see it.
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Overview

• Chapter 1: Math. No specific question focused just on this
Chapter. Concepts presented in Chapter 1 will of course be
used.

• Chapter 2: Newtonian Mechanics and Reference frames.

• Chapter 3: Harmonic motion (linear oscillations).

• Chapter 4: Non-linear oscillations.
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Chapter 2.
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Newton’s Laws

• First law:
• A body remains at rest or in uniform motion unless acted upon by a
force.
• Note: uniform motion requires constant speed and constant direction.

• Second law:
• A body acted upon by a force moves in such a manner that the time
rate of change of its linear momentum equals the force.

• Third law:
• If two bodies exert forces on each other, these forces are equal in
magnitude and opposite in direction.
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Reference Systems

• Inertial reference frame:
• A reference frame in which Newton’s laws are valid.

• Specific requirements:
• The equation of motion of a single particle should be independent of
the origin of the coordinate system.
• The equation of motion of a single particle should be independent of
the orientation of the coordinate system.
• Time must be homogeneous.

• Accelerating reference frames are not good inertial reference
frames (e.g. accelerating airplane).
• The earth is a non-inertial reference frame since it rotates around its
axis, since it rotates around the sun, and since the sun rotates around
the center of the Milky-Way.



Frank L. H. Wolfs Department of Physics and Astronomy, University of Rochester, Slide 11

Conservation Laws.

• The following conservation laws are a direct consequence of
Newton’s laws:
• Conservation of linear momentum: the the total force is 0 N.
• Conservation of angular momentum: then the total torque is 0 Nm.
• Conservation of energy: in a conservative force field that is constant
in time. The requirements can be written as:
!
F = −

!
∇U

∂U
∂t

= 0
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Predicting motion based on U.

Stable

Stable

Unstable
Unstable

Unstable
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Problem 2.37

A particle of mass m has a speed v = a/x, where x is its
displacement. Find the force F(x) responsible for this motion.
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Chapter 3.
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Harmonic motion.

• Harmonic motion:
• Motion around a position of stable equilibrium.
• Simple harmonic motion:
• At small distances around the equilibrium position, the force is
approximately equal to –kx.

• The total energy of the system is constant. The kinetic and potential
energy will be time dependent.

• Damped and driven harmonic motion:
• Damped harmonic motion occurs when friction or drag forces are acting
on the system. Energy is dissipated and the system will gradually come to
rest.

• Driven harmonic motion adds a driving force in order to compensate for
damping losses.
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Solving Second-Order Differential Equations.

• General form:

• If you find two linearly independent solutions, every other solution will
be a linear combination of these two solutions.
• The general solution has two constants, defined by the initial conditions.

• Homogeneous equation:
• f(x) is equal to 0.
• Simple harmonic motion when a = 0.

• Inhomogeneous equation:
• f(x) is not equal to 0.

d 2y
dx2

+ a dy
dx

+ by = f (x)
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Homogeneous Equation
• Consider a damping force –bv and a restoring force –kx.

The equation of motion for such system is: ma = –bv – kx.
• This provides us with the homogeneous equation:

• Try the following solution: x = ert.
• Valid solution if r2 + 2br + w0

2 = 0:

• Three different scenarios:
• b2 > w0

2: over damping. Two values of r.
• b2 = w0

2: critical damping. One value of r. Second solution is test
where s = -b.
• b2 < w0

2: under damping. Two values of r.

d 2x
dt 2

+ b
m
dx
dt

+ k
m
x = d

2x
dt 2

+ 2β dx
dt

+ω 0
2x = 0

r =
−2β ± 4β 2 − 4ω 0

2

2
= −β ± β 2 −ω 0

2
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Inhomogeneous Equation

• Consider a damping force –bv, a restoring force –kx, and a
driving force f(t). The equation of motion for such system
is: ma = –bv – kx + f(t).

• The equation of motion becomes:

• Suppose:
• v is a solution of the inhomogeneous equation (this is called the
particular solution).
• u is the general solution of the homogeneous equation (this is called
the complementary solution).

then:
• u + v is the general solution of the inhomogeneous equation.

d 2x
dt 2

+ b
m
dx
dt

+ k
m
x = d

2x
dt 2

+ 2β dx
dt

+ω 0
2x = f t( )
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Visualizing Harmonic Motion.
y vs x for different restoring forces.
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Visualizing Harmonic Motion.
Phase Diagrams.

Different paths cannot cross.
Paths are followed in a clock-
wise direction.

Different paths correspond 
to different energies.
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Problem 3.12.

A simple pendulum of mass m is suspended from a fixed
point by a weightless, extensionless rod of length l. Obtain
the equation of motion for small angles.

Discuss the motion when it takes place in a viscous medium
with a retarding force 2m√(gl) dq/dt.
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Chapter 4.
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Non-linear oscillations.

• Linear differential equations:
• Terms are proportional to acceleration, velocity, and position:

• Non-linear differential equations:
• Include terms that non-linear in term of acceleration, velocity, and
position.
• Non-linear terms are divided in two groups:
• Symmetric around the equilibrium position. This requires terms
proportional to er3. If e>0: soft system. If e<0: hard system.

• Symmetric around the equilibrium position. This requires terms
proportional to r3.

d 2y
dx2

+ a dy
dx

+ by = f (x)
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Phase Diagrams.
Asymmetric for asymmetric potentials.

Closed contours for
motion around 
stable equilibrium
positions.
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Visualizing chaos.
Poincare plots.

SHM

SHM

Periodic

Periodic

Chaotic

Chaotic

Chaotic
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Logistic equations.
Creating chaos with maps.
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Visualizing chaos.
Bifurcation diagrams.
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The Lyapunov exponent l.

• The development of chaos can be studied by examining the
Lyapunov exponent l:

• This exponent is a measure of the difference between
solutions when we make a small change in the initial
conditions:
• If l < 0: stable solutions.
• If l = 0: doubling of the number of solutions
• If l > 0: chaos.

λ = lim
x→∞

1
n

ln
df α , xi( )

dxi=1

n−1

∑
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Visualizing chaos.
The Lyapunov exponent l.

Stable solutions.

Chaos.
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No need to always solve differential 
equations.  Problem 4.9.

Investigate the motion of an undamped particle, subject to a
force of the form:

k and d are positive constants.

F x( ) =
−kx x < a

− k +δ( )x +δa x > a

⎧
⎨
⎪

⎩⎪
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Solution
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ENOUGH FOR TODAY?


