# Classical Mechanics Phy 235, Lecture 25.

Frank L. H. Wolfs Department of Physics and Astronomy University of Rochester

# Yesterday: Sunday December 5. An important evening: pakjes avond.





## Course Announcements.

- There will be office hours today to help you with questions about Exam # 3. Details were distributed via email. Come prepared to ask questions about the exam.
- Exam # 3 can be picked up on Monday December 13 during my office hours.
- Any questions related to the grading of exam # 3 need to be submitted to Prof. Wolfs by Friday December 17. Drop your exam and a note describing why you feel you deserve more points in the PHY 235 homework locker.
- The final exam will cover Chapter 1 13. The exam will take place on Tuesday December 14, 12.30 pm 3.30 pm in B&L 109.
- Extra office hours will be scheduled for Monday December 13.

Frank L. H. Wolfs

On Wednesday ..... the truth about Bernoulli.

#### The Physics of Flying! Lecture 26.



Views of New York State from 9000'.

## The wave equation.



Frank L. H. Wolfs

## The wave equation.

• The ideal wave equation:

$$\frac{\partial^2 q}{\partial x^2} = \frac{\rho}{\tau} \frac{\partial^2 q}{\partial t^2}$$

• The "real" wave equation:

$$\frac{\partial^2 q}{\partial x^2} - \frac{D}{\tau} \frac{\partial q}{\partial t} + \frac{F(x,t)}{\tau} = \frac{\rho}{\tau} \frac{\partial^2 q}{\partial t^2}$$

Frank L. H. Wolfs

#### Problem 13.11.

• When a particular driving force is applied to a string, it is observed that the string's vibration is purely in the n<sup>th</sup> harmonic. Find the driving force.

$$f_s(t) = \int_0^L F(x,t) \sin \frac{s\pi x}{b} \, dx = 0 \quad \text{for } s \neq n$$

$$= \int_{0}^{L} F(x,t) \sin \frac{s\pi x}{b} \, dx \neq 0 \quad \text{for } s = n$$

Frank L. H. Wolfs

Solving the ideal wave equation.

• The ideal wave equation:

$$\frac{\partial^2 q}{\partial x^2} = \frac{\rho}{\tau} \frac{\partial^2 q}{\partial t^2}$$

- No dissipation: energy is conserved.
- Use separation of variables to solve the wave equation:

$$q(x,t) = \psi(x)\chi(t)$$

• This results on two differential equations:

$$\frac{v^2}{\psi} \frac{\partial^2 \psi}{\partial x^2} = \omega^2 \quad \Leftrightarrow \quad \frac{\partial^2 \psi}{\partial x^2} - \frac{\omega^2}{v^2} \psi = 0$$
$$\frac{1}{\chi} \frac{\partial^2 \chi}{\partial t^2} = \omega^2 \quad \Leftrightarrow \quad \frac{\partial^2 \chi}{\partial t^2} - \omega^2 \chi = 0$$

Frank L. H. Wolfs



# 4 Minute 07 Second Intermission.

- Since paying attention for 1 hour and 15 minutes is hard when the topic is physics, let's take a 4 minute 07 second intermission.
- You can:
  - Stretch out.
  - Talk to your neighbors.
  - Ask me a quick question.
  - Enjoy the fantastic music.



# Wave velocities

- Wave velocity:
  - Velocity that keeps the amplitude constant: *v*.
- Phase velocity:
  - Velocity that keeps the phase constant: V.
- The velocities depend on the wave number. When this is the case, the medium is called a **dispersive medium**.

# Dispersion. Limits information transmission.



#### http://jick.net/skept/GWP/

Wave Propagation: reflection at fixed end.



#### Other wave features.

• Two wave travelling in opposite directions can create a **standing wave**:

$$q(x,t) = A\left\{e^{-ik(x+vt)} + e^{-ik(x-vt)}\right\} = 2Ae^{-ikx}\cos(\omega t)$$

- For the loaded string:
  There is a minimum wave length.
  - There is a maximum wave number.

$$\lambda_n = \frac{2L}{n}$$

$$k_n = \frac{2\pi}{\lambda_n} = \frac{2\pi}{\left(\frac{2L}{n}\right)} \approx \frac{\pi}{d}$$

$$\omega_n = 2\sqrt{\frac{\tau}{md}} \sin\left\{\frac{k_n d}{2}\right\} = 2\sqrt{\frac{\tau}{md}}$$

• There is a maximum frequency.

Frank L. H. Wolfs

#### Complex wavenumbers.

• Higher frequencies can be supported if the wavenumber becomes complex:

$$\omega = 2\sqrt{\frac{\tau}{md}} \sin\left\{\frac{d}{2}(\kappa - i\beta)\right\} =$$

$$= 2\sqrt{\frac{\tau}{md}} \left\{\sin\left(\frac{d}{2}\kappa\right)\cos\left(\frac{i\beta d}{2}\right) - \cos\left(\frac{d}{2}\kappa\right)\sin\left(\frac{i\beta d}{2}\right)\right\} =$$

$$= 2\sqrt{\frac{\tau}{md}} \left\{\sin\left(\frac{d}{2}\kappa\right)\cosh\left(\frac{\beta d}{2}\right) - i\cos\left(\frac{d}{2}\kappa\right)\sinh\left(\frac{\beta d}{2}\right)\right\}$$

Note: the equation in my notes is missing  $\kappa$  in the last two steps.

Frank L. H. Wolfs

## Solutions at high frequencies.



# $\cosh(x)$ function.



Frank L. H. Wolfs

# **ENOUGH FOR TODAY?**

Frank L. H. Wolfs