Classical Mechanics Phy 235, Lecture 15.

Frank L. H. Wolfs Department of Physics and Astronomy University of Rochester

Comments on the PHY 235W Paper.

- Develop a strict schedule.
- For example:
 - First draft ready by Monday November 8.
 - Discuss with writing fellows during the week of November 8.
 - Modify paper during the week of November 15.
- Past mistakes:
 - Asking for an extension.
 - Unable to meet with writing fellows.
 - Too many topics (little depth).
 - Plagiarism.
- Paper due on 11/24/2021.

Topics due on 10/29/2021.

Frank L. H. Wolfs

Chasing Bennu

Frank L. H. Wolfs

So where are my KLM photos?

Collisions. Laboratory and Center-of-Mass Frames.

Frank L. H. Wolfs

Outcome of collisions not uniquely defined.

If the mass of particle 1 is equal to the mass of particle 2, the two masses will always move at right angles with respect to each other after the scattering.

Using elastic collisions to probe targets.

Collisions can be used to probe targets.

$$T_{final} = \frac{m_1^2}{m_1^2 + m_2^2} \left[\left(\frac{m_2}{m_1}\right)^2 - 1 \right] T_{initial}$$

If you know the projectile mass/kinetic energy and you measure its final kinetic energy, you can determine the mass of the target.

1D and 2D Collisions.

Frank L. H. Wolfs

2 Minute 37 Second Intermission.

- Since paying attention for 1 hour and 15 minutes is hard when the topic is physics, let's take a 2 minute 37 second intermission.
- You can:
 - Stretch out.
 - Talk to your neighbors.
 - Ask me a quick question.
 - Enjoy the fantastic music.

Impact parameter and scattering angle.

Frank L. H. Wolfs

Impact parameter and scattering angle.

Connecting impact parameter and scattering angle: Coulomb repulsion.

Connecting impact parameter and scattering angle: "hard" scattering.

Rutherford Scattering

Frank L. H. Wolfs

Rocket motion.

- Good example of a variable mass system.
- First rocket equation: Ru = Ma where:
 - R = dM/dt is the rate of fuel consumption.
 - *u* is the positive velocity of the exhaust gasses relative to the rocket.
 - *a* is the acceleration of the rocket.
- Second rocket equation:

$$v_f = v_i + u \ln\left(\frac{M_i}{M_f}\right)$$

ENOUGH FOR TODAY?

Frank L. H. Wolfs