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I cannot mention the Yankees today.
KLM is always a great backup.
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Course Information

• Due to fall break, there will be no recitations next week.

• But …. there will be office hours next week to help you
with homework set # 6 (due next week on Friday).

• Your fall break may be a good time to start thinking about
the final paper in this course. Note: this paper is due in 49
days from today.
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Hamilton’s Principle

" Of all the possible paths along which a dynamical system
may more from one point to another within a specified time
interval (consistent with any constraints), the actual path
followed is that which minimizes the time integral of the
difference between the kinetic and potential energies. "

The quantity T - U is called the Lagrangian L.

The Lagrange equation(s) of motion are:

δ T −U( )dt
t1

t2

∫ = 0

∂L
∂xi

− d
dt

∂L
∂ !xi

= 0
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Generalized coordinates.

• So far we have expressed the Lagrangian in terms of
(generalized) position and (generalized) velocities:

• An alternative is to express the Lagrangian in terms of
(generalized) position and (generalized) momenta. For
example:

L = T −U = 1
2
m !xi

2

i=1

3

∑ −U xi( )

pr =
∂L
∂ !r

= ∂T
∂ !r

= m!r

pθ =
∂L
∂ !θ

= ∂T
∂ !θ

= mr2 !θ
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Conservation Laws – Part I.

• Conservation of energy:
• Lagrangian does not depend on time explicitly.
• If L does not depend explicitly on time, it can be shown that

• The constant H is called the Hamiltonian of the system:

L − !qj
∂L
∂ !qj

⎛

⎝⎜
⎞

⎠⎟j
∑ = constant = -H

H = !qj
∂L
∂ !qj

⎛

⎝⎜
⎞

⎠⎟j
∑ − L
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Problem 7.22.

A particle of mass m moves in one dimension under the
influence of a force F:

where k and t are positive constants. Compute the
Lagrangian and Hamiltonian functions. Compare the
Hamiltonian and the total energy and discuss the conservation
of energy for the system.

F x,t( ) = k
x2
e− t τ( )
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2 Minute 2 Second Intermission.

• Since paying attention for 1
hour and 15 minutes is hard
when the topic is physics,
let’s take a 2 minute 2
second intermission.

• You can:
• Stretch out.
• Talk to your neighbors.
• Ask me a quick question.
• Enjoy the fantastic music.
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Conservation Laws – Part II.

• Conservation of linear momentum:
• Lagrangian should not be effected by a translation of space.

• Conservation of angular momentum:
• Lagrangian should not be effected by a rotation of space.
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Canonical Equations of Motion

Lagrange equations of motion in terms of generalized
momentum:

The Hamiltonian H can be written in terms of the generalized
momenta as

d
dt

∂L
∂ !qi

= !pi =
∂L
∂qi

H = !qj
∂L
∂ !qjj

∑ − L = !qj pj
j
∑ − L
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Hamilton’s Equations of Motion

• For each coordinate: two equations of motion.
• For each coordinate there is only one Lagrange equation of motion.

• Equations of motion are first order differential equations.
• The Lagrange equations of motion are second order differential
equations.

∂H
∂pj

− !qj = 0

∂H
∂qj

+ !pj = 0

∂H
∂t

+ ∂L
∂t

= 0
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Problem 7.38

The potential for an anharmonic oscillator is U = kx2/2 + bx4/4
where k and b are constants.

Find Hamilton's equations of motion.
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Problem 7.28

Consider a force F that is provided by the potential U:

Use plane polar coordinates and find Hamilton’s equations of
motion.

U = − k
r
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Problem 7.24

Consider a simple plane pendulum consisting of a mass m
attached to a string of length l. After the pendulum is set into
motion, the length of the string is shortened at a constant rate:

The suspension point remains fixed. Compute the Lagrangian
and Hamiltonian functions. Compare the Hamiltonian and
the total energy, and discuss the conservation of energy for
the system.

dl
dt

= −α = constant
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End of Chapter 7

• We now have finished the material that will be covered on
midterm exam# 2: chapters 5 – 7.

• Midterm exam # 2 will take place on Tuesday October 26
between 8 am and 9.30 am in B&L 109.

•NOTE: WEWILL SKIP SECTIONS 7.12 AND 7.13.

Have a great Fall break!!!
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ENOUGH FOR TODAY?


