Classical Mechanics Phy 235, Lecture 08.

Frank L. H. Wolfs Department of Physics and Astronomy University of Rochester

February 1 (my father's birthday): the flood of 1953.

In 1953, my father was in the army and was sent to rescue people and rebuild dikes.

20 days after the flood: plans were developed. **De Delta Werken** were completed in 1997.

An example: Oosterscheldekering, 9 km long.

Frank L. H. Wolfs

After constructing the pillars, flood the construction area and pick up the pillars.

Laying a carpet. Putting down pillars.

Done.

Frank L. H. Wolfs

Before Chapter 6 Spring oscillations. Inertial frames and non-inertial frames.

Connect IO to bottom of spring and use it to measure *a* and *F*.

Frank L. H. Wolfs

Before Chapter 6 Optional homework assignment.

• Interesting observations:

- When you compare the range with the analytical solution, you see the impact of rounding errors.
- It appears that the product of thrust force times time is constant.

Force constant F (kg/s)	Time of thrust T (t)
3.0	42.0
4.0	32.0
5.0	25.0
6.0	20.5
7.0	17.5
8.0	15.5
9.0	14.0
10.0	12.5
15.0	8.25
20.0	6.25
25.0	6.2
50.0	2.2
Table of combinations of F and T that produce an imp	pact point in the numerical projectile approximately

Results Exam # 1

- Question 1:
 - Average = 19 out of 25.
 - Example problem in book.
- Question 2:
 - Average =14 out of 25.
 - End-of-chapter problem.
- Question 3:
 - Average = 10 out of 25.
 - Discussed during class.
- Question 4:
 - Average = 16 out of 25.
 - NAP = Nieuw Amsterdams Peil!

Exam 1

Calculus of Variations.

Problem 6.4

• Show that the geodesic on the surface of a right circular cylinder is a segment of a helix.

https://www.encyclopediaofmath.org/index.php/Helical_line

2 Minute 19 Second Intermission.

- Since paying attention for 1 hour and 15 minutes is hard when the topic is physics, let's take a 2 minute 19 second intermission.
- You can:
 - Stretch out.
 - Talk to your neighbors.
 - Ask me a quick question.
 - Enjoy the fantastic music.

Problem 6.7

- Consider light passing from one medium with index of refraction n_1 into another medium with index of refraction n_2 .
- Use Fermat's principle to minimize time, and derive the law of refraction:

 $n_1 \sin \theta 1 = n_2 \sin \theta 2.$

Second Euler's Equation.

• The first version of Euler's equation is:

$$\frac{\partial f}{\partial y} - \frac{d}{dx} \left(\frac{\partial f}{\partial y'} \right) = 0$$

- The second version of Euler's equation is useful when *f* does not explicitly depend on *x*.
- The second version of Euler's equation is:

$$\frac{\partial f}{\partial x} - \frac{d}{dx} \left(f - y' \frac{\partial f}{\partial y'} \right) = 0$$

• When f does not explicitly depend on x this equation becomes:

$$f - y' \frac{\partial f}{\partial y'} = \text{constant}$$

Frank L. H. Wolfs

Problem 6.4

- Show that the geodesic on the surface of a right circular cylinder is a segment of a helix.
- Now use Euler's second equation.

https://www.encyclopediaofmath.org/index.php/Helical_line

More than one dependent variable.

- Consider the function *f* which depends on several dependent variables y₁, y₂, y₃, etc.
- In this case, to minimize the path integral of *f*, the dependent variables must satisfy the following condition:

$$\frac{\partial f}{\partial y_i} - \frac{d}{dx} \left(\frac{\partial f}{\partial y_i} \right) = 0$$

ENOUGH FOR TODAY?

Frank L. H. Wolfs