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Chapter 11 
Dynamics of Rigid Bodies 

 
 A rigid body is a collection of particles with fixed relative positions, independent of the motion 
carried out by the body.  The dynamics of a rigid body has been discussed in our introductory 
courses, and the techniques discussed in these courses allow us to solve many problems in which 
the motion can be reduced to two-dimensional motion.  In this special case, we found that the 
angular momentum associated with the rotation of the rigid object is directed in the same direction 
as the angular velocity: 

 
 

 
In this equation, I is the moment of inertia of the rigid body which was defined as 

 

 

 
where ri is the distance of mass mi from the rotation axis.  We also found that the kinetic energy 
of the body, associated with its rotation, is equal to 

 

 

 
The complexity of the motion increases when we need three dimensions to describe the motion.  
There are many different ways to describe motion in three dimensions.  One common method is 
to describe the motion of the center of mass (in a fixed coordinate system) and to describe the 
motion of the components around the center of mass (in the rotating coordinate system). 
 
 
 The Inertia Tensor 
 In Chapter 10 we derived the following relation between the velocity of a particle in the fixed 
reference frame, vf, and its velocity in the rotating reference frame vr: 

 
 

 
If we assume that the rotating frame is fixed to the rigid body, then vr = 0. 
 The total kinetic energy of the rigid body is the sum of the kinetic energies of each component 
of the rigid body.  Thus 
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Let us now examine the three terms in this expression: 

 

 

 

 

 

 

 
The second term is zero, if we choose the origin of the rotating coordinate system to coincide with 
the center of mass of the rigid object. 
 Using the previous expressions, we can now rewrite the total kinetic energy of the rigid object 
as 

 

 

 
The quantity Iij is called the inertia tensor, and is a 3 x 3 matrix: 
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Based on the definition of the inertia tensor we make the following observations: 

• The tensor is symmetric: Iij = Iji.  Of the 9 parameters, only 6 are free parameters. 
• The non-diagonal tensor elements are called products of inertia. 
• The diagonal tensor elements are the moments of inertia with respect to the three coordinate 

axes of the rotating frame. 
 
 
 Angular Momentum 
 The total angular momentum L of the rotating rigid object is equal to the vector sum of the 
angular momenta of each component of the rigid object.  The ith component of L is equal to 

 

 

 
This equation clearly shows that the angular momentum is in general not parallel to the angular 
velocity.  An example of a system where the angular momentum is directed in a direction different 
from the direction of the angular velocity is shown in Figure 1. 
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Figure 1.  A rotating dumbbell is an example of a system in which the angular velocity is not 
parallel to the angular momentum. 

 
The rotational kinetic energy can also be rewritten in terms of the angular momentum: 

 

 

 
 
 
 Principal Axes 
 We always have the freedom to choose our coordinate axes such that the problem we are trying 
solve is simplified.  When we are working on problems that involve the use of the inertia tensor, 
we can obtain a significant simplification if we can choose our coordinate axes such that the non-
diagonal elements are 0.  In this case, the inertia tensor would be equal to 

 

 

 
For this inertia tensor we get the following relation between the angular momentum and the angular 
velocity: 
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The rotational kinetic energy is equal to  
 

 

 
The axes for which the non-diagonal matrix elements vanish are called the principal axes of 
inertia. 
 The biggest problem we are facing is how do we determine the proper coordinate axes?  If the 
angular velocity vector is directed along one of the three coordinate axes that would get rid of the 
non-diagonal inertia tensor elements, we expect to see the following relation between the angular 
velocity vector and the angular momentum: 

 
 

 
Substituting the general form of the inertia tensor into this expression, we must require that 

 

 

 
This set of equations can be rewritten as 

 

 

 
This set of equations only has a non-trivial solution if the determinant of the coefficients vanish.  
This requires that 

 

 

 
This requirement leads to three possible values of I.  Each of these corresponds to the moment of 
inertia about one of the principal aces. 
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 Example: Problem 11.13 
 A three-particle system consists of masses mi and coordinates (x1, x2, x3) as follows: 

 

 

 
Find the inertia tensor, the principal axes, and the principal moments of inertia. 
 
We get the elements of the inertia tensor from Eq. 11.13a: 
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The principal moments of  inertia are gotten by solving 
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To find the principal axes, we substitute into (see example 11.3): 
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Solving the first for  and substituting into the second gives 

   

Substituting into the third now gives 
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Proceeding in the same way gives the other two principal axes: 

   

We note that the principal axes are mutually orthogonal, as they must be. 
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 Our observation in problem 11.13 that the principal vectors are orthogonal is true in general.  
We can prove this in the following manner.  For the mth principal moment the following relations 
must hold: 

 
 

 

 

 
Combining these two equations we obtain 

 

 

 
Now multiply both sides of this equation by win and sum over i: 

 

 

 
A similar relation can be obtained for the nth principal moment, multiplied by wkm and summed 
over k: 

 

 

 
If we subtract the last equation from the one-before-last equation we obtain the following result: 

 

 

 
Assuming that the principal momenta are distinct, the previous equation can only be correct if 
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 Transformations of the Inertia Tensor 
 In our discussion so far we have assumed that the origin of the rotating reference frame 
coincidence with the center of mass of the rigid object.  In this Section we will examine what will 
change if we do not make this assumption. 
 Consider the two coordinate systems shown in Figure 2.  One reference frame, the x frame, has 
its origin O coincide with the center of mass of the rigid object; the second reference frame, the X 
frame, has an origin Q that is displaced with respect to the center of mass of the rigid object. 

 

 
Figure 2.  Two coordinate systems used to describe our rigid body. 

 
The inertia tensor Jij in reference frame X is defined in the same way as it was defined previously: 

 

 

 
The coordinates in the X frame are related to the coordinates in the x frame in the following way: 

 
 

 
Using this relation we can express the inertia tensor in reference frame X in terms of the coordinates 
in reference frame x: 
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The last term on the right-hand side is equal to 0 since the origin of the coordinate system x 
coincides with the center of mass of the object: 

 

 

 
The relation between the inertia tensor in reference frame X and the inertia tensor in reference 
frame x is thus given by 

 

 

 
This relation is called the Steiner's parallel-axis theorem and is one example of how coordinate 
transformations affect the inertia tensor. 
 The transformation discussed so far is a simple translation.  Other important transformations 
are rotations.  In Chapter 1 we discussed many examples of rotations, and determined that the most 
general way to express rotations is by using the rotation matrix l: 
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In order to determine the relation between the inertia tensor in the two coordinate frames, we use 
the fact that the angular momentum is the product of the inertia tensor and the angular velocity, in 
both frames: 

 

 

 
and 

 

 

 
In order to relate the inertia tensors, we use the coordinate transformations for L and w: 

 

 

 
This equation can be simplified if we multiply each side by lik and sum over k: 

 

 

 
where we have used the orthogonal properties of the rotation matrix.  Using the relation between 
the angular momentum and the angular velocity in the rotated coordinate frame we see that the 
inertia tensors in the two coordinate frames are related as follows: 

 

 

 
where lt is the transposed matrix.  In tensor notation we can rewrite this relation as 

 
 

 
It turns out that for any inertia tensor we can find a rotation such that the inertia tensor in the rotated 
frame is a diagonal matrix (all non-diagonal elements are equal to 0). 
 We thus have seen two different approaches to diagonalize the inertia tensor: 1) find the 
principal axes of inertia, and 2) find the proper rotation matrix. 
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 Example: Problem 11.16 
 Consider the following inertia tensor: 

 

 

 
Perform a rotation of the coordinate system by an angle q about the x3 axis.  Evaluate the 
transformed tensor elements, and show that the choice q = p/4 renders the inertia tensor diagonal 
with elements A, B, and C. 
 
The rotation matrix is 
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The moment of inertia tensor transforms according to 

   (2) 

That is 

 

 

  

I{ } =

1
2

A+ B( ) 1
2

A− B)( ) 0

1
2

A− B)( ) 1
2

A+ B( ) 0

0 0 C

⎧

⎨

⎪
⎪⎪

⎩

⎪
⎪
⎪

⎫

⎬

⎪
⎪⎪

⎭

⎪
⎪
⎪

 

λ( ) =
cosθ sin θ 0
−sin θ cosθ 0

0 0 1

⎡

⎣

⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥

 ′Ι( ) = λ( ) Ι( ) λt( )

  

′I( ) =
cosθ sin θ 0
−sin θ cosθ 0

0 0 1

⎡

⎣

⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥

1
2

A+B( ) 1
2

A−B( ) 0

1
2

A−B( ) 1
2

A+B( ) 0

0 0 C

⎡

⎣

⎢
⎢
⎢
⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥
⎥
⎥
⎥

cosθ −sin θ 0
sin θ cosθ 0

0 0 1

⎡

⎣

⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥

  

=
cosθ sin θ 0
−sin θ cosθ 0

0 0 1

⎡

⎣

⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥

1
2

A+B( ) cosθ + 1
2

A−B( ) sin θ − 1
2

A+B( ) sin θ + 1
2

A−B( ) cosθ 0

1
2

A−B( ) cosθ + 1
2

A+B( ) sinθ − 1
2

A−B( ) sinθ + 1
2

A+B( ) cosθ 0

0 0 C

⎡

⎣

⎢
⎢
⎢
⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥
⎥
⎥
⎥



Physics 235  Chapter 11 

-  13  - 

 

or 

 (3) 

If , .  Then, 

   (4) 

 
 
 Euler Angles 
 Any rotation between different coordinate systems can be expressed in terms of three 
successive rotations around the coordinate axes.  When we consider the transformation from the 
fixed coordinate system x' to the body coordinate system x, we call the three angles the Euler angles 
f, q, and y (see Figure 3). 
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Figure 3.  The Euler angles used to transform the fixed coordinate system x' into the body 
coordinate system x. 

 
The total transformation matrix is the product of the individual transformations (note order) 

 

 

 
With each of the three rotations we can associate an angular velocity w.  To express the angular 
velocity in the body coordinate system, we can use Figure 3c. 
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along the x3''' axis, which is also the x3 axis, is equal to 
 

 
 

The projection along the x2''' axis is equal to 
 

 
 

Figure 3c shows that when we project this projection along the x1 and x2 axes we obtain the 
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• wq:  Figure 3c shows that the angular velocity wq is directed in the x1''' - x2''' plane.  Its projection 
along the x3''' axis, which is also the x3 axis, is equal to 0. 

 
 

 
Figure 3c shows that when we project wq along the x1 and x2 axes we obtain the following 
components in the body coordinate system: 

 
 

 
 

 
• wy:  Figure 3c shows that the angular velocity wy is directed along the x3''' axis, which is also 

the x3 axis.  The components along the other body axes are 0.  Thus: 
 

 
 

 
 

 
 

 
The angular velocity, in the body frame, is thus equal to 

 

 

 
 
 
 The Force-Free Euler Equations 
 Let's assume for the moment that the coordinate axis correspond to the principal axes of the 
body.  In that case, we can write the kinetic energy of the body in the following manner: 
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where Ii are the principal moments of the rigid body.  If for now we consider that the rigid object 
is carrying out a force-free motion (U = 0) then the Lagrangian L will be equal to the kinetic energy 
T.  The motion of the object can be described in terms of the Euler angles, which can serve as the 
generalized coordinates of the motion.  Consider the three equations of motion for the three 
generalized coordinates: 
 
• The Euler angle f:  Lagrange's equation for the coordinate f is 

 

 

Differentiating the angular velocity with respect to the coordinate f we find 
 

 

 
and Lagrange's equation becomes 

 

 

 
• The Euler angle q:  Lagrange's equation for the coordinate q is 

 

 

 
Differentiating the angular velocity with respect to the coordinate q we find 

 

  
T = 1

2
Iiω i

2

i
∑

   
0 = ∂L

∂φ
− d

dt
∂L
∂ !φ

= ∂T
∂φ

− d
dt

∂T
∂ !φ

= ∂T
∂ω i

∂ω i

∂φi
∑ − d

dt
∂T
∂ω i

∂ω i

∂ !φi
∑ = Iiω i

∂ω i

∂φi
∑ − d

dt
Iiω i

∂ω i

∂ !φi
∑ = 0

∂ω1

∂φ
= 0 ∂ω1

∂ !φ
= sinθ sinψ

∂ω 2

∂φ
= 0 ∂ω 2

∂ !φ
= sinθ cosψ

∂ω 3

∂φ
= 0 ∂ω 3

∂ !φ
= cosθ

d
dt

I1ω1 sinθ sinψ + I2ω 2 sinθ cosψ + I3ω 3 cosθ{ } = 0

 
0 = ∂T

∂θ
− d
dt

∂T
∂ !θ

= ∂T
∂ω i
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∂θi
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∂θi
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dt
Iiω i
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and Lagrange's equation becomes 

 

 

 
• The Euler angle y:  Lagrange's equation for the coordinate y is 

 

 

 
Differentiating the angular velocity with respect to the coordinate y we find 

 

 

 
and Lagrange's equation becomes 

 

 

 
Of all three equations of motion, the last one is the only one to contain just the components of the 
angular velocity.  Since our choice of the x3 axis was arbitrary, we expect that similar relations 
should exist for the other two axes.  The set of three equation we obtain in this way are called the 
Euler equations: 
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∂ω1
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∂ω 2

∂θ
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∂ω 2

∂ !θ
= −sinψ

∂ω3

∂θ
= − !φ sinθ

∂ω3

∂ !θ
= 0

   
!φ I1ω1 sinψ + I2ω 2 cosψ{ }cosθ − I3ω3 sinθ( )− d

dt
I1ω1 cosψ − I2ω 2 sinψ{ } = 0

   
0 = ∂T

∂ψ
− d

dt
∂T
∂ !ψ

= ∂T
∂ω i

∂ω i

∂ψi
∑ − d

dt
∂T
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∂ω i

∂ !ψi
∑ = Iiω i

∂ω i

∂ψi
∑ − d

dt
Iiω i

∂ω i

∂ !ψi
∑ = 0

∂ω1

∂ψ
= !φ sinθ cosψ − !θ sinψ =ω 2

∂ω1

∂ !ψ
= 0

∂ω 2

∂ψ
= − !φ sinθ sinψ − !θ cosψ = −ω1

∂ω 2

∂ !ψ
= 0

∂ω 3

∂ψ
= 0 ∂ω 3

∂ !ψ
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I1ω1ω 2 − I2ω 2ω1 −

d
dt

I3ω3{ } = I1 − I2( )ω1ω 2 −
d
dt

I3ω3{ } = I1 − I2( )ω1ω 2 − I3 !ω3 = 0

   I1 − I2( )ω1ω 2 − I3 !ω3 = 0

   I2 − I3( )ω 2ω3 − I1 !ω1 = 0
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 As an example of how we use Euler's equations, consider a symmetric top.  The top will have 
two different principal moments: I1 = I2 and I3.  In this case, the first Euler equations reduces to 

 
 

 
or 

 
 

 
The other two Euler equations can be rewritten as 

 

 

 

 

 
This set of equations has the following solution: 

 
 

 
 

 
The magnitude of the angular velocity of the system is constant since 

 

 

 
The angular velocity vector traces out a cone in the body frame (it precesses around the x3 axis - 
see Figure 4).  The rate with which the angular velocity vector precesses around the x3 axis is 
determined by the value of W.  When the principal moment I3 and the principal moment I1 are 
similar, W will become very small. 
 Since we have assumed that there are no external forces and torques acting on the system, the 
angular momentum of the system will be constant in the fixed reference frame.  If the angular 
momentum is initially pointing along the x'3 axis it will continue to point along this axis (see Figure 
5).  Since there are no external forces and torques acting on the system, the rotation kinetic energy 
of the system must be constant.  Thus 

   I3 − I1( )ω3ω1 − I2 !ω 2 = 0

   I3 !ω3 = 0

  ω3 t( ) = constant =ω3

   
!ω1 = −

I3 − I1

I1

ω3

⎛

⎝⎜
⎞

⎠⎟
ω 2 = −Ωω 2
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I3 − I1

I1

ω3

⎛

⎝⎜
⎞

⎠⎟
ω1 =Ωω1

  ω1 t( ) = AcosΩt

  ω 2 t( ) = AsinΩt

ω = ω1
2 t( )+ω 2

2 t( )+ω 3
2( ) = A2 +ω 3

2
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Since the angle between the angular velocity vector and the angular momentum vector must be 
constant, the angular velocity vector must trace out a space cone around the x'3 (see Figure 5). 

 

 

 
 
 

 

Figure 4.  The angular velocity of a force-free 
symmetric top, precessing around the x3 axis in 
the body frame. 

Figure 5. The angular velocity of a force-free 
symmetric top, tracing out a space-cone around 
the x'3 axis in the body frame. 

 
 
 
 Example: Problem 11.27 
 A symmetric body moves without the influence of forces or torques.  Let x3 be the symmetry 
axis of the body and L be along x3'.  The angle between the angular velocity vector and x3 is a.  Let 
w and L initially be in the x2-x3 plane.  What is the angular velocity of the symmetry axis about L 
in terms of I1, I3, w, and a? 
 

   
Initially: 

  
Trot =

1
2
ω • L

L

α

θ

ωx3
x2

x3′�
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Thus 

   (1) 

From Eq. (11.102) 

   

Since , we have 

   (2) 

From Eq. (11.131) 

   

(2) becomes 

   (3) 

From (1), we may construct the following triangle 

   

from which  

Substituting into (3) gives 
 

   

 
 
 The Euler Equations in a Force Field 
 When the external forces and torques acting on the system are not equal to 0, we can not use 
the method we have used in the previous section to obtain expressions for the angular velocity and 

L1 = 0 = I1ω1

L2 = L sin θ = I1ω 2 = I1ω sinα

L3 = L cosθ = I3ω 3 = I3ω cosα
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L3
=

I1

I3
tanα

  ω 3 = !φ cosθ + !ψ
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!φ cosθ =ω cosα − !ψ

   
!ψ = −Ω = −

I3 − I1

I1
ω 3

   
!φ cosθ =

I3

I1

ω cosα

I3

I3 tan α

θ

  
cosθ =

I3

I3
2 + I1

2 tan2 α⎡⎣ ⎤⎦
1 2

   
!φ = ω

I1

I1
2 sin2 α + I3

2 cos2 α
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acceleration.  The procedure used in the previous section relied on the fact that the potential energy 
U is 0 in a force-free environment, and therefore, the Lagrangian L is equal to the kinetic energy 
T. 
 When the external forces and torques are not equal to 0, the angular momentum of the system 
is not conserved: 

 

 

 
Note that this relation only holds in the fixed reference frame since this is the only good inertial 
reference frame.  In Chapter 10 we looked at the relation between parameters specified in the fixed 
reference frame compared to parameters specified in the rotating reference frame, and we can use 
this relation to correlate the rate of change of the angular momentum vector in the fixed reference 
frame with the rate of change of the angular momentum vector in the rotating reference frame: 

 

 

 
This relation can be used to generate three separate relations by projecting the vectors along the 
three body axes: 

 

 

 

 

 

 

 
These equations are the Euler equations for the motion of the rigid body in a force field.  In the 
absence of a torque, these equations reduce to the force-free Euler equations. 
 
 
 Example: Motion of a Symmetric Top with One Point Fixed 
 In order to describe the motion of a top, which has its tip fixed, we use two coordinate systems 
whose origins coincide (see Figure 6).  Since the origins coincide, the transformation between 
coordinate systems can be described in terms of the Euler angles, and the equations of motion will 
be the Euler equations: 

 

  

dL
dt

⎛
⎝⎜

⎞
⎠⎟ fixed

= N

  
N = dL

dt
⎛
⎝⎜

⎞
⎠⎟ fixed

= dL
dt

⎛
⎝⎜

⎞
⎠⎟ rotating

+ω × L

   
N1 =

dL1

dt
+ ω × L( )1 =

dL1

dt
+ ω 2L3 −ω3L2( ) = I1 !ω1 − I2 − I3( )ω 2ω3

   
N2 =

dL2

dt
+ ω × L( )2

=
dL2

dt
+ ω3L1 −ω1L3( ) = I2 !ω 2 − I3 − I1( )ω3ω1

   
N3 =

dL3

dt
+ ω × L( )3

=
dL3

dt
+ ω1L2 −ω 2L1( ) = I3 !ω3 − I1 − I2( )ω1ω 2
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Figure 6.  Spinning top with fixed tip. 

 
Since the top is symmetric around the x3 axis, it principal moments of inertia with respect to the x1 
and x2 axes are identical.  The Euler equations now become 

 
 

 
 

 
 

 
The first equation immediately tells us that  

 
 

 
The motion of the top is often described in terms of the motion of its rotating axes.  The kinetic 
energy of the system is equal to 

 

   I1 − I2( )ω1ω 2 − I3 !ω3 = 0

   I2 − I3( )ω 2ω3 − I1 !ω1 = N1

   I3 − I1( )ω3ω1 − I2 !ω 2 = N2

   I3 !ω3 = 0

   I1 − I3( )ω 2ω3 − I1 !ω1 = N1

   − I1 − I3( )ω3ω1 − I1 !ω 2 = N2

 ω3 = constant
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The potential energy of the system, assuming the center of mass of the top is located a distance h 
from the tip, is equal to 

 
 

 
The Lagrangian is thus equal to 

 

 

 
The Lagrangian does not depend on f and y, and thus 

 

 

 

 

 
We thus conclude that the angular momenta associated with the Euler angles f and y are constant: 

 

 

 

 

 
Expressing the momenta in terms of the Euler angles f and y allows us to express the rate of 
change of these Euler angles in terms of the angular momenta: 

 

 

 

 

 
Since there are no non-conservative forces acting on the top, the total energy E of the system is 
conserved.  Thus 
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The total energy can be rewritten in terms of the angular momenta: 

 

 

 
Since the angular velocity with respect to the x3 axis is constant, we can subtract it from the energy 
E to get the effective energy E' (note: this is equivalent to choosing the zero point of the energy 
scale).  Thus 

 

 

 
The effective energy only depends on the angle q and on dq/dt since the angular momenta are 
constants.  The manipulations we have carried out have reduced the three-dimensional problem to 
a one-dimensional problem.  The first term in the effective energy is the kinetic energy associated 
with the rotation around the x1 axis.  The last two terms depend only on the angle q and not on the 
angular velocity dq/dt.  These terms are what we could call the effective potential energy, defined 
as 

 

 

 
The effective potential becomes large when the angle approaches 0 and p.  The angular dependence 
of the effective potential is shown in Figure 7.  If the total effective energy of the system is E1', we 
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expect the angle q to vary between q1 and q2.  We thus expect that the angle of inclination of the 
top will vary between these two extremes. 

 

 
Figure 7.  The effective potential of a rotating top. 

 
 The minimum effective energy that the system can have is E2'.  The corresponding angle can 
be found by requiring 

 

 

 
This requirement can be rewritten as a quadratic equation of a parameter b, where b is defined as 

 
 

 
In general, there are two solutions to this quadratic equation.  Since b is a real number, the solution 
must be real, and this requires that 
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This equation can be rewritten as 
 

 
 

When we study a spinning top, the spin axis is oriented such that q0 < p/2.  The previous equation 
can then be rewritten as 

 
 

 
or 

 

 

 
There is thus a minimum angular velocity the system must have in order to produce stable 
precession.  The rate of precession can be found by calculating  

 

 

 
Since b has two possible values, we expect to see two different precession rates: one resulting in 
fast precession, and one resulting in slow precession. 
 When the angle of inclination is not equal to q0, the system will oscillate between two limiting 
values of q.  The precession rate will be a function of q and can vary between positive and negative 
values, depending on the values of the angular momenta.  The phenomenon is called nutation, and 
possible nutation patterns are shown in Figure 8.  The type of nutation depends on the initial 
conditions. 
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Figure 8.  The nutation of a rotating top. 
 
 
 Example: Problem 11.30 
 Investigate the equation for the turning points of the nutational motion by setting dq/dt = 0 in 
the equation of the effective energy.  Show that the resulting equation is cubic in cosq and has two 
real roots and one imaginary root. 
 
If we set  in the equation for the effective energy we obtain 
 

   (1) 

 
Re-arranging, this equation can be written as 
 

 (2) 

 

which is cubic in cosq. 

V(q) has the form shown in the diagram. Two of the roots occur in the region , and 
one root lies outside this range and is therefore imaginary. 
 

  !θ = 0
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2 I12 1− cos2 θ( ) + Mgh cosθ

  2Mgh I12( ) cos3 θ − 2 ′E I12 + Pψ
2( ) cos2 θ + 2 PφPψ − Mgh I12( ) cosθ + 2 ′E I12 − Pφ

2( ) = 0

 −1 ≤ cosθ ≤ 1
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 Stability of Rigid-Body Rotations 
 The rotation of a rigid body is stable if the system, when perturbed from its equilibrium 
condition, carries out small oscillations about it.  Consider we use the principal axes of rotation to 
describe the motion, and we choose these axes such that I3 > I2 > I1.  If the system rotates around 
the x1 axis we can write the angular velocity vector as 

 
 

 
Consider what happens when we apply a small perturbation around the other two principal axes 
such that the angular velocity becomes 

 
 

 
The corresponding Euler equations are 
 

 
 

 
 

 
 

 
Since we are talking about small perturbations from the equilibrium state, lµ will be small and 
can be set to 0.  The second equation can thus be used to conclude that  

 
 

 
The remaining equations can be rewritten as 
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 ω1 = constant
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The last equation can be differentiated to obtain 

 

 

 
The term within the parenthesis is positive since we assumed that I3 > I2 > I1.  This differential 
equation has the following solution: 

 
 

 
where 

 

 

 
When we look at the perturbation around the x3 axis we find the following differential equation 

 

 

 
The solution of the second-order differential equation is 

 
 

 
We see that the perturbations around the x2 axis and the x3 axis oscillate around the equilibrium 
values of l = µ = 0.  We thus conclude that the rotation around the x1 axis is stable. 
 Similar calculations can be done for rotations around the x2 axis and the x3 axis.  The 
perturbation frequencies obtained in those cases are equal to 
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We see that the first frequency is an imaginary number while the second frequency is a real 
number.  Thus, the rotation around the x3 axis is stable, but the rotation around the x2 axis is 
unstable. 
 
 
 Example: Problem 11.34 
 Consider a symmetrical rigid body rotating freely about its center of mass.  A frictional torque 
(Nf = -bw) acts to slow down the rotation.  Find the component of the angular velocity along the 
symmetry axis as a function of time. 
 
 The Euler equation, which describes the rotation of an object about its symmetry axis, say 
the x axis, is 
 

   

 

where  is the component of torque along Ox.  Because the object is symmetric about 
the x axis, we have  , and the above equation becomes 
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