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Chapter 10 
Motion in a Non-Inertial Reference Frame 

 
 The laws of physics are only valid in inertial reference frames.  However, it is not always easy 
to express the motion of interest in an inertial reference frame.  Consider for example the motion 
of a book laying on top of a table.  In a reference frame that is fixed with respect to the Earth, the 
motion is simple: if the book is at rest, it will remain at rest (here we assume that the surface of the 
table is horizontal).  However, we do know that the earth frame is not an inertial frame.  In order 
to describe the motion of the book in an inertial frame, we need to take into account the rotation 
of the Earth around its axis, the rotation of the Earth around the sun, the rotation of our solar system 
around the center of our galaxy, etc. etc.  The motion of the book will all of a sudden be a lot more 
complicated! 
 For many experiments, the effect of the Earth not being an inertial reference frame is too small 
to be observed.  Other effects, such as the tides, can only be explained if we take into consideration 
the non-inertial nature of the reference frame of the Earth and apply the laws of physics in an 
inertial frame. 
 
 
 Rotating Coordinate Systems 
 Consider the two coordinate systems shown in Figure 1.  The non-primed coordinates are the 
coordinates in the rotating frame, and the primed coordinates are the coordinates in the fixed 
coordinate system. 
 

 
Figure 1.  Fixed (primed) and rotating (non-primed) coordinate systems.  The vector R specifies 
the origin of the rotating coordinate system in the fixed coordinate system. 
 
 Consider the motion of a point P.  In the fixed coordinate system, the position of P is specified 
by the position vector r' and in the rotating coordinate system, its position is specified by the 
position vector r.  As can be seen from Figure 1, these two vectors are related: 
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Consider what happens when the rotating coordinate system rotates by an infinitesimal angle dq.  
If point P is at rest in the rotating coordinate system, we will see the position of P in our fixed 
coordinate system change: 

 
 

 
If the rotation occurs during a period dt, we can rewrite the previous equation as 

 

 

 
To derive this relation we have assumed that point P remains are test in the rotating coordinate 
system.  If point P is moving with respect to the rotating coordinate system, we need to add this 
contribution to the expression of the velocity of P in the fixed coordinate system: 

 

 

 
This relation is valid for any vector, not just the position vector.   If instead of the position vector 
we use the angular velocity vector we find that 

 

 

 
This relation shows that the angular acceleration is the same in both reference frames. 
 In order to determine the velocity of point P in the fixed coordinate frame in terms of the 
velocity of point P in the rotating coordinate system, we have to go back to the correlation between 
the position vectors shown in Figure 1.  By differentiating the vectors with respect to time we 
obtain the following relation: 

 

 

 
Using our expression for the velocity of P in the fixed coordinate system we find that 
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This equation can also be rewritten as 
 

 

 
where 

 

 

 

 

 

 

 
 

 
 
 
 "Newton's Law" in Rotating Reference Frames 
 Consider the situation in which an external force F is acting on P.  Only in the fixed reference 
frame can we use Newton's second law to determine the corresponding acceleration of P: 

 

 

 
Another expression for the acceleration of P can be obtained by differentiating the velocity-relation 
obtained in the previous section with respect to time: 
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An observer in the rotating reference frame will observe an acceleration  

 

 

 
This acceleration is certainly not equal to F/m, but the previous relations can be used to express 
the acceleration in the rotating reference frame in terms of the acceleration in the fixed reference 
frame: 

 

 

 
This relation immediately shows what has been repeated already many times: the acceleration of 
an object at P will be the same in two reference frames, only if one frame does not rotate with 
respect to the other frame (that is w = 0 rad/s and dw/dt = 0 rad/s2) and if the frames do not 
accelerate with respect to the other frame. 
 In order to explore the implication of the relation between the acceleration of P in the rotating 
and in the fixed coordinate frames, we assume for the moment that the origin of the rotating 
reference frame is not accelerating with respect to the origin of the fixed reference frame (dV/dt = 
0), and that the axis of the rotating reference frame are rotating with a constant angular velocity 
(dw/dt = 0 rad/s2).  Under these assumptions, we find that the acceleration of P in the rotating 
reference frame is equal to 

 
 

 
The second and the third terms on the right-hand side are non-inertial terms that are introduced to 
correct the real force F in order to be able to use Newton-like laws in the rotating frame: 

 
 

 
Using this effective force, an observer in the rotating frame will be able to determine the 
acceleration in the rotating frame by dividing this effective force by the mass of the object. 
 The second term on the right-hand side of the expression of the effective force is called the 
Coriolis force, and the last term on the right-hand side is called the centripetal force.  Both of 
these forces are however not real forces; they are introduced in order to be able to use an equation 
similar to Newton's second law in non-inertial reference frames.  When we try to describe an object 
on the surface of the earth, we need to take the effects of these artificial forces into consideration.  
In the next two sections we will focus on these two forces in some detail. 
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 The Centripetal Force 
 The surface of the earth is a non-inertial reference frame.  The biggest deviation from good 
"inertial" behavior is due to the rotation of the earth around its axis.  In the current discussion we 
will thus ignore the motion of the earth around the sun, the motion of the solar system in our in 
our galaxy, etc. etc.   
 Consider a pendulum at rest in our rotating reference frame, which is at rest with respect to the 
surface of the earth.  Since the pendulum is at rest in this rotating reference frame, its velocity vr 
in this frame is zero.  The effective force seen by the pendulum is thus equal to 

 
 

 
The direction of g0 in this equation is directly towards the center of the earth, while the direction 
of the non-inertial correction term is radially outwards (see Figure 2).  If the angle between the 
position vector r and the rotation axis is equal to q, we find the magnitude of the correction term 
is equal to 

 
 

 

 
Figure 2.  Direction of the centripetal correction term. 

 
The effect of this correction is that the equilibrium position of the pendulum (the position in which 
the arm of the pendulum is parallel to the direction of the net force) is changed, and the arm of the 
pendulum no longer points towards the center of the earth (see Figure 3).  The direction of the 

  
Feff = ma f − mω × ω × r{ } = m g0 −ω × ω × r{ }{ }
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gravitational acceleration, as measured by an observer in the rotating reference frame, is thus equal 
to 

 
 

 
The centripetal correction changes both the magnitude of the observed acceleration and its 
direction.  The angle between the direction of g0 and the direction of g can be found easily (see 
Figure 4): 

 

 

 
 

 
Figure 3.  Effect of the centripetal term on a pendulum located on the surface of the earth. 

 
Figure 4.  Direction of net gravitational acceleration. 

 
 The same result could have been obtained if we had solved this problem in a non-rotating 
frame.  Consider a simple pendulum of mass m attached a string.  There are two forces acting on 
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this mass: the tension T in the string and the gravitational force Fg.  An observer in the inertial 
frame will observe that mass m carries out circular motion, with a radius R sinq, and know thus 
that there must be a net force acting on it, pointing towards the rotation axis.  This force must have 
a magnitude of  

 

 

 
This force must be generated by the component of the tension and the gravitational force in this 
direction.  We must thus require that (see Figure 5): 

 
 

 
or 

 
 

 
 

 
Figure 5.  Pendulum in inertial frame. 

 
The net force in the direction perpendicular to the plan of rotation must be zero, and we must thus 
require that 
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Combining these two equations we obtain the following relation between the angles: 
 

 

 
which is the same results we obtained previously. 
 
 
 Coriolis Force 
 The Coriolis force is responsible for the deflection of objects moving in a rotating coordinate 
system.  The force is proportional to the vector product of the angular velocity vector of the rotating 
coordinate system (as measured by an observer in a fixed coordinate system) and the velocity 
vector of the object in the rotating coordinate frame: 

 
 

 
The effect of the Coriolis force on the motion of an object is illustrated in Figure 6.  Note that the 
deflection depends on the z component of the angular velocity vector, which is perpendicular to 
the surface of the earth.  The z component reaches a maximum value at the North pole, and is zero 
at the equator. 

 

 
Figure 6.  Deflection of a moving object as a result of the Coriolis force. 

 
As a result of the Coriolis force, air flowing from West to East towards a region of low pressure 
will be deflected to the South on the Northern hemisphere.  Air approaching the low from the East 
will be deflected to the North.  On the Northern hemisphere we will thus expect that the air is 
flowing counter clockwise around an area of low pressure; in the same manner we can show that 
air flows clockwise around an area of high pressure.  A lot about the weather can be understood 
on the basis of these observations.  See for example the forecast map shown Figure 7.  The position 
of the high pressure system over Michigan will bring cold air from Canada to Rochester (since the 
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circulation around the high is in the clockwise direction).  We thus expect the winds to be from 
the North.  Once the high passes Rochester, the wind should come from the South, bringing us 
higher temperatures.  The low in the South of the USA will pull in moisture from the gulf of 
Mexico and rain and thunder can be expected in the region in front of the low (since this is the 
region where moisture of the golf of Mexico will go as a result of the counter-clockwise flow 
around the low). 

 

 
 

Figure 7.  Forty-eight hour forecast map for Wednesday November 3, 2004, at 1200 Z 
(http://www.aopa.org/members/wx/focpage.cfm?sfcmap=0700d485). 

 
 
 Example: Problem 10.6 
 A bucket of water is set spinning about its symmetry axis.  Determine the shape of the water 
in the bucket. 

 
Consider a small mass m on the surface of the water.  From Eq. (10.25) in our text book we get 
 

   

 

In the rotating frame, the mass is at rest; thus 

   Feff = F − m !!R f − m !ω × r − mω × ω × r( )− 2mω × vr
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The force F will consist of gravity and the force due to the pressure gradient, which is normal to 
the surface in equilibrium.  Since 
 

   

 

we now have 
 

   

 

where Fp is due to the pressure gradient. 

 
Since Feff = 0, the sum of the gravitational and centrifugal forces must also be normal to the surface.  
Thus q¢  = q. 
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