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Chapter 8 
Central-Force Motion 

 
 
 In this Chapter we will use the theory we have discussed in Chapter 6 and 7 and apply it to 
very important problems in physics, in which we study the motion of two-body systems on which 
central force are acting.  We will encounter important examples from astronomy and from nuclear 
physics. 
 
 
 Two-Body Systems with a Central Force 
 Consider the motion of two objects that are effected by a force acting along the line connecting 
the centers of the objects.  To specify the state of the system, we must specify six coordinates (for 
example, the (x, y, z) coordinates of their centers).  The Lagrangian for this system is given by 

 

 

 
Note: here we have assumed that the potential depends on the position vector between the two 
objects.  This is not the only way to describe the system; we can for example also specify the 
position of the center-of-mass, R, and the three components of the relative position vector r.  In 
this case, we choose a coordinate system such that the center-of-mass is at rest, and located at the 
origin.  This requires that 

 

 

 
The relative position vector is defined as 

 
 

 
The position vectors of the two masses can be expressed in terms of the relative position vector: 

 

 

 

 

 
The Lagrangian can now be rewritten as 
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where µ is the reduced mass of the system: 

 

 

 
 
 
 Two-Body Systems with a Central Force: Conserved Quantities 
 Since we have assumed that the potential U depends only on the relative position between the 
two objects, the system poses spherical symmetry.  As we have seen in Chapter 7, this type of 
symmetry implies that the angular momentum of the system is conserved.  As a result, the 
momentum and position vector will lay in a plane, perpendicular to the angular momentum vector, 
which is fixed in space.  The three-dimensional problem is thus reduced to a two-dimensional 
problem.  We can express the Lagrangian in terms of the radial distance r and the polar angle q: 

 

 

 
The generalized momenta for this Lagrangian are 

 

 

 

 

 
The Lagrange equations can be used to determine the derivative of these momenta with respect to 
time: 

 

 

 

 

 
The last equation tells us that the generalized momentum pq is constant: 
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The constant l is related to the areal velocity.  Consider the situation in Figure 1.  During the time 
interval dt, the radius vector sweeps an area dA where 

 

 

 
 

 
Figure 1.  Calculation of the areal velocity. 

 
The areal velocity, dA/dt, is thus equal to 

 

 

 
This result is also known as Kepler's Second Law. 
 The Lagrangian for the two-body system does not depend explicitly on time.  In Chapter 7 we 
showed that in that case, the energy of the system is conserved.  The total energy E of the system 
is equal to 

 

 

 
 
 
 Two-Body Systems with a Central Force: Equations of Motion 
 If the potential energy is specified, we can use the expression for the total energy E to determine 
dr/dt: 
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This equation can be used to find the time t as function of r: 

 

 

 
However, in many cases, the shape of the trajectory, q(r), is more important than the time 
dependence.  We can express the change in the polar angle in terms of the change in the radial 
distance: 

 

 

 
Integrating both sides we obtain the following orbital equation 

 

 

 
The extremes of the orbit can be found in general by requiring that dr/dt = 0, or 

 

 

 
In general, this equation has two solutions, and the orbit is confined between a minimum and 
maximum value of r.  Under certain conditions, there is only a single solution, and in that case the 
orbit is circular.  Using the orbital equation we can determine the change in the polar angle when 
the radius changes from rmin to rmax.  During one period, the polar angle will change by 
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If the change in the polar angle is a rational fraction of 2p then after a number of complete orbits, 
the system will have returned to its original position.  In this case, the orbit is closed.  In all other 
cases, the orbit is open. 
 The orbital motion is specified above in terms of the potential U.  Another approach to study 
the equations of motion is to start from the Lagrange equations.  In this case we obtain an equation 
of motion that includes the force F instead of the potential U: 

 

 

 
This version of the equations of motion is useful when we can measure the orbit and want to find 
the force that produces this orbit. 
 
 
 Example: Problem 8.8 
 Investigate the motion of a particle repelled by a force center according to the law F(r) = kr.  
Show that the orbit can only be hyperbolic. 
 
The general expression for q(r) is [see Eq. (8.17) in the text book] 
 

   (8.8.1) 

 

where 
 

   

 

in the present case.  Substituting x = r2 and dx = 2rdr into (8.8.1), we have 
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   (8.8.3) 

 

and expressing again in terms of r, we find 
 

   (8.8.4) 

 

or, 
 

   (8.8.5) 

 

In order to interpret this result, we set 
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and specifying q0 = p/4, (8.8.5) becomes 
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   (8.8.9) 

 

or, 
 

   (8.8.10) 

 

Since a ' > 0, e ' > 1 from the definition, (8.8.10) is equivalent to 
 

   (8.8.11) 

 

which is the equation of a hyperbola. 
 
 
 Solving the Orbital Equation 
 The orbital equation can only be solved analytically for certain force laws.  Consider for 
example the gravitational force.  The corresponding potential is -k/r and the polar angle q is thus 
equal to  

 

 

 
Consider the change of variables from r to u = l/r: 

 

 

 
The integral can be solved using one of the integrals found in Appendix E (see E8.c): 

′α = x2 + y2 + ′ε x2 − y2( )

1= x2

′α
1+ ′ε

+ y2
′α

1− ′ε

1= x2

′α
1+ ′ε

+ y2
′α

1− ′ε

θ r( ) = ± l / r2

2µ E + k
r
− l2

2µr2
⎛
⎝⎜

⎞
⎠⎟

dr∫

θ r( ) = ±
l / r( )2 / l

2µ E + k
l
l
r
− 1
2µ

l
r

⎛
⎝⎜

⎞
⎠⎟
2⎛

⎝⎜
⎞

⎠⎟

d l
u

⎛
⎝⎜

⎞
⎠⎟∫ = ± u2 / l

2µ E + k
l
u − 1

2µ
u2⎛

⎝⎜
⎞
⎠⎟

l
u2
du∫ =

= ± 1

2µ E + k
l
u − 1

2µ
u2⎛

⎝⎜
⎞
⎠⎟

du∫



Physics 235  Chapter 8  

-  8  - 

 

 

 
This equation can be rewritten as 

 

 

 
We can always choose our reference position such that the constant is equal to p/2 and we thus 
find the following solution: 

 

 

 
We can rewrite this expression such that we can determine the distance r as function of the polar 
angle: 

 

 

 
Since cosq varies between -1 and +1, we see that the minimum (the pericenter) and the maximum 
(the apocenter) positions are 
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The equation for the orbit is in general expressed in terms of the eccentricity e and the latus 
rectum 2a: 

 

 

 

 

 
The possible orbits are usually parameterized in terms of the eccentricity, and examples are shown 
Figure 2. 

 

 
Figure 2.  Possible orbits in the gravitational field. 

 
The period of the orbital motion can be found by integrating the expression for dt over one 
complete period: 
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When we take the square of this equation we get Kepler's third law: 

 

 

 
 
 
 The Centripetal Force and Potential 
 In the previous discussion it appears as if the potential U is modified by the term l2/(2µr2).  
This term depends only on the position r since l is constant, and it is interpreted as a potential 
energy.  The force associated with this potential energy is 

 

 

 
This force is often called the centripetal force (although it is not a real force), and the potential is 
called the centripetal potential.  This potential is a fictitious potential and it represents the effect 
of the angular momentum about the origin.  Figure 3 shows an example of the real potential, due 
to the gravitational force in this case, and the centripetal potential.  The effective potential is the 
sum of these two potentials and has a characteristic dip where the potential energy has a minimum.  
The result of this dip is that there are certain energies for which the orbit is bound (has a minimum 
and maximum distance).  These turning points are called the apsidal distances of the orbit. 

 

 
 

Figure 3.  The effective potential for the gravitational force when the system has an angular 
momentum l. 
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We also note that at small distances the force becomes repulsive. 
 
 
 Example: Problem 8.22 
 Discuss the motion of a particle moving in an attractive central-force field described by F(r) = 
–k/r3.  Sketch some of the orbits for different values of the total energy. 
 
For the given force 
 

   

the potential is 
 

   (8.22.1) 

 

and the effective potential is 
 

   (8.22.2) 

 

The equation of the orbit is [cf. Eq. (8.20) in the text book] 
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Let us consider the motion for various values of !. 
 
i) : 
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   (8.22.5) 

 

with the solution 
 

   (8.226) 

 

and the particle spirals towards the force center. 
 
ii) : 
 
In this case the effective potential is positive and decreases monotonically with increasing r.  For 
any value of the total energy E, the particle will approach the force center and will undergo a 
reversal of its motion at r = r0; the particle will then proceed again to an infinite distance.  Setting 
 

   

 

equation (8.22.4) becomes 
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with the solution 
 

   (8.22.8) 

 

Since the minimum value of u is zero, this solution corresponds to unbounded motion, as expected 
from the form of the effective potential V(r). 
 
iii) : 
 
For this case we set 
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and the orbit equation becomes 
 

   (8.22.9) 

 

with the solution 
 

   (8.22.10) 

 

so that the particle spirals in towards the force center. 
 
 
 Orbital Motion 
 The understanding of orbital dynamics is very important for space travel.  The orbit in which 
a spaceship travels is determined by the energy of the spaceship.  When we change the energy of 
the ship, we will change the orbit from for example a spherical orbit to an elliptical orbit.  By 
changing the velocity at the appropriate point, we can control the orientation of the new orbit. 
 The Hohmann transfer represents the path of minimum energy expenditure to move from one 
solar-based orbit to another.  Consider travel from earth to mars (see Figure 4).  The goal is to get 
our spaceship in an orbit that has apsidal distances that correspond to the distance between the 
earth and the sun and between mars and the sun.  This requires that 
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The eccentricity of such an orbit is thus equal to 

 

 

 
The total energy of an orbit with a major axis of a = (r1 + r2)/2 is equal to 
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Since the space ship starts from a circular orbit with a major axis a = r1, its initial energy is equal 
to  

 

 

 

 
 

Figure 4.  The Hohmann transfer to travel from earth to mars. 
 

The increase in the total energy is thus equal to 
 

 

 
This energy must be provided by the thrust of the engines that increase the velocity of the space 
ship (note: the potential energy does not change at the moment of burn, assuming the thrusters are 
only fired for a short period of time). 
 The problem with the Hohmann transfer mechanism is that the conditions have to be just right, 
and only if the planets are in the proper position will the transfer work.  There are many other ways 
to travel between earth and mars.  Many of these require less time than the time required for the 
Hohmann transfer, but they require more fuel (see Figure 5). 
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Figure 5.  Different ways to get from earth to mars. 
 

 
SECTIONS 8.9 AND 8.10 WILL BE SKIPPED! 
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