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Chapter 2.  Electrostatics

2.1.  The Electrostatic Field

To calculate the force exerted by some electric charges, q1, q2, q3, ... (the source charges) on

another charge Q (the test charge) we can use the principle of superposition.  This principle

states that the interaction between any two charges is completely unaffected by the presence of

other charges.  The force exerted on Q by q1, q2, and q3 (see Figure 2.1) is therefore equal to the

vector sum of the force F 1  exerted by q1 on Q, the force F 2  exerted by q2 on Q, and the force F 3
exerted by q3 on Q.

q3

q1

q2

Q

F2

F3

F1
Ftot

Figure 2.1.  Superposition of forces.

The force exerted by a charged particle on another charged particle depends on their

separation distance, on their velocities and on their accelerations.  In this Chapter we will

consider the special case in which the source charges are stationary.

The electric field produced by stationary source charges is called and electrostatic field.

The electric field at a particular point is a vector whose magnitude is proportional to the total

force acting on a test charge located at that point, and whose direction is equal to the direction of
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the force acting on a positive test charge.  The electric field E , generated by a collection of

source charges, is defined as

E =
F 

Q

where F  is the total electric force exerted by the source charges on the test charge Q.  It is

assumed that the test charge Q is small and therefore does not change the distribution of the

source charges.  The total force exerted by the source charges on the test charge is equal to

F = F 1 + F 2 + F 3 + ... =
1
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The electric field generated by the source charges is thus equal to

E =
F 

Q
=

1

4pe0

qi

ri
2 ˆ r i

i =1

n

Â

In most applications the source charges are not discrete, but are distributed continuously over

some region.  The following three different distributions will be used in this course:

1. line charge l:  the charge per unit length.

2. surface charge s:  the charge per unit area.

3. volume charge r:  the charge per unit volume.

To calculate the electric field at a point P  generated by these charge distributions we have to

replace the summation over the discrete charges with an integration over the continuous charge

distribution:

1.  for a line charge: E P ( ) =
1

4pe0

ˆ r 

r 2 ldl
Line
Ú

2.  for a surface charge: E P ( ) =
1

4pe0

ˆ r 

r 2 sda
Surface

Ú

3.  for a volume charge: E P ( ) =
1

4pe0

ˆ r 

r 2 rdt
Volume

Ú
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Here ˆ r  is the unit vector from a segment of the charge distribution to the point P  at which we

are evaluating the electric field, and r is the distance between this segment and point P .

Example:  Problem 2.2

a) Find the electric field (magnitude and direction) a distance z above the midpoint between two

equal charges q a distance d apart.  Check that your result is consistent with what you would

expect when z » d.

b) Repeat part a), only this time make he right-hand charge -q instead of +q.

z
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Figure 2.2.  Problem 2.2

a) Figure 2.2a shows that the x components of the electric fields generated by the two point

charges cancel.  The total electric field at P is equal to the sum of the z components of the

electric fields generated by the two point charges:

E P ( ) = 2
1

4pe0

q
1
4

d2 + z 2Ê 
Ë 

ˆ 
¯ 

z

1

4
d2 + z 2

ˆ z =
1

2pe0

qz

1
4

d2 + z 2Ê 
Ë 

ˆ 
¯ 

3/ 2 ˆ z 

When z » d this equation becomes approximately equal to

E P ( ) @
1

2pe0

q

z 2 ˆ z =
1

4pe0

2q

z 2 ˆ z 
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which is the Coulomb field generated by a point charge with charge 2q.

b) For the electric fields generated by the point charges of the charge distribution shown in

Figure 2.2b the z components cancel.  The net electric field is therefore equal to

E P ( ) = 2
1

4pe0

q
1
4

d2 + z 2Ê 
Ë 

ˆ 
¯ 

d
2

1

4
d2 + z 2

ˆ x =
1

4pe0

qd

1
4

d2 + z 2Ê 
Ë 

ˆ 
¯ 

3/ 2 ˆ x 

Example:  Problem 2.5

Find the electric field a distance z above the center of a circular loop of radius r which carries

a uniform line charge l.

r

z

P

dEldEr

2dEz

Figure 2.3.  Problem 2.5.

Each segment of the loop is located at the same distance from P (see Figure 2.3).  The

magnitude of the electric field at P due to a segment of the ring of length dl is equal to

dE =
1

4pe0

ldl

r 2 + z 2
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When we integrate over the whole ring, the horizontal components of the electric field cancel.

We therefore only need to consider the vertical component of the electric field generated by each

segment:

dEz =
z

r 2 + z 2
dE =

ldl

4pe0

z

r 2 + z 2( )3/ 2

The total electric field generated by the ring can be obtained by integrating dEz over the whole

ring:

E =
l

4pe0

z

r 2 + z 2( )3/ 2 dl
Ring
Ú =

1

4pe0

z

r 2 + z 2( )3/ 2 2pr( )l =
1

4pe0

z

r 2 + z 2( )3/ 2 q

Example:  Problem 2.7

Find the electric field a distance z from the center of a spherical surface of radius R, which

carries a uniform surface charge density s.  Treat the case z < R (inside) as well as z > R

(outside).  Express your answer in terms of the total charge q on the surface.

P

z

rcosq

rsinq

z-rcosq

q

Figure 2.4.  Problem 2.7.

Consider a slice of the shell centered on the z axis (see Figure 2.4).  The polar angle of this

slice is q and its width is dq.  The area dA of this ring is

dA = 2pr sinq( )rdq = 2pr 2 sinqdq

The total charge on this ring is equal to
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dq = sdA =
1

2
qsinqdq

where q is the total charge on the shell.  The electric field produced by this ring at P can be

calculated using the solution of Problem 2.5:

dE =
1

8pe0

q

r

z - r cosq
r 2 + z 2 - 2zr cosq( )3/ 2 r sinqdq

The total field at P can be found by integrating dE with respect to q:

E =
1

8pe0

q

r

z - r cosq
r 2 + z 2 - 2zr cosq( )3/ 2 r sinqdq

0

p

Ú =

=
1

8pe0

q

r

z - r cosq
r 2 + z 2 - 2zr cosq( )3/ 2 d r cosq( )

0

p

Ú =
1

8pe0

q

r

z - y

r 2 + z 2 - 2zy( )3/ 2 dy
-r

r

Ú

This integral can be solved using the following relation:

z - y

r 2 + z 2 - 2zy( )3/ 2 = -
d

dz

1

r 2 + z 2 - 2zy

Substituting this expression into the integral we obtain:

E = -
1

8pe0

q
r

d
dz

1

r 2 + z 2 - 2zy
dy
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r

Ú = -
1

8pe0

q
r
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=
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Outside the shell, z > r and consequently the electric field is equal to

E = -
1

8pe0

q

r

d

dz

r + z( ) - z - r( )
z

= -
1

4pe0

q
d

dz

1

z
=

1

4pe0

q

z 2

Inside the shell, z < r and consequently the electric field is equal to

E = -
1

8pe0

q

r

d

dz

r + z( ) - r - z( )
z

= -
1

4pe0

q

r

d

dz
1 = 0
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Thus the electric field of a charged shell is zero inside the shell.  The electric field outside the

shell is equal to the electric field of a point charge located at the center of the shell.

2.2.  Divergence and Curl of Electrostatic Fields

The electric field can be graphically represented using field lines.  The direction of the field

lines indicates the direction in which a positive test charge moves when placed in this field.  The

density of field lines per unit area is proportional to the strength of the electric field.  Field lines

originate on positive charges and terminate on negative charges.  Field lines can never cross

since if this would occur, the direction of the electric field at that particular point would be

undefined.  Examples of field lines produced by positive point charges are shown in Figure 2.5.

a) b)

Figure 2.5.  a)  Electric field lines generated by a positive point charge with charge q.  b)
Electric field lines generated by a positive point charge with charge 2q.

The flux of electric field lines through any surface is proportional to the number of field lines

passing through that surface.  Consider for example a point charge q located at the origin.  The

electric flux F E through a sphere of radius r, centered on the origin, is equal to

F E = E ∑ da 
Surface

Ú =
1

4pe0

q

r 2 ˆ r 
Ê 
Ë 

ˆ 
¯ ∑ r 2 sinqdqdfˆ r ( )

Surface
Ú =

q

e0

Since the number of field lines generated by the charge q depends only on the magnitude of the

charge, any arbitrarily shaped surface that encloses q will intercept the same number of field

lines.  Therefore the electric flux through any surface that encloses the charge q is equal to q / e0 .

Using the principle of superposition we can extend our conclusion easily to systems containing

more than one point charge:
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F E = E ∑ da 
Surface

Ú = E i ∑ da 
Surface

Ú
i

Â =
1

e0

qi
i

Â

We thus conclude that for an arbitrary surface and arbitrary charge distribution

E ∑ da 
Surface

Ú =
Qenclosed

e0

where Qenclosed is the total charge enclosed by the surface.  This is called Gauss's law.  Since

this equation involves an integral it is also called Gauss's law in integral form.

Using the divergence theorem the electric flux F E can be rewritten as

F E = E ∑ da 
Surface

Ú = — ∑ E ( )dt
Volume

Ú

We can also rewrite the enclosed charge Qencl in terms of the charge density r:

Qenclosed = rdt
Volume

Ú

Gauss's law can thus be rewritten as

— ∑ E ( )dt
Volume

Ú =
1

e0

rdt
Volume

Ú

Since we have not made any assumptions about the integration volume this equation must hold

for any volume.  This requires that the integrands are equal:

— ∑ E =
r
e0

This equation is called Gauss's law in differential form.

Gauss's law in differential form can also be obtained directly from Coulomb's law for a

charge distribution r r '( ) :

E r '( ) =
1

4pe0

Dˆ r 

Dr( )2 r r '( )dt '
Volume

Ú

where Dr = r - r '.  The divergence of E r  is equal to
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— ∑ E r ( ) =
1

4pe0

— ∑
Dˆ r 

Dr( )2

Ê 
Ë Á 

ˆ 
¯ ˜ r r '( )dt '

Volume
Ú =

1

4pe0

4pd 3 r - r '( )r r '( )dt '
Volume

Ú =
r r ( )

e0

which is Gauss's law in differential form.  Gauss's law in integral form can be obtained by

integrating — ∑ E r ( )  over the volume V:

— ∑ E r ( )( )dt
Volume

Ú = E ∑ da 
Surface

Ú = F E =
r r ( )

e0

dt
Volume

Ú =
QEnclosed

e0

Example:  Problem 2.42

If the electric field in some region is given (in spherical coordinates) by the expression

E r ( ) =
Aˆ r + B sinq cosf ˆ f 

r

where A and B are constants, what is the charge density r?

The charge density r can be obtained from the given electric field, using Gauss's law in

differential form:

r = e0 — ∑ E ( ) = e0

1

r 2

∂
∂r

r 2Er( ) +
1

r sinq
∂

∂q
sinqEq( ) +

1

r sinq
∂

∂f
Ef( )Ê 

Ë Á 
ˆ 
¯ ˜ =

= e0

1

r 2

∂
∂r

Ar( ) +
1

r sinq
∂

∂f
B sinq cosf

r
Ê 
Ë 

ˆ 
¯ 

Ê 
Ë Á 

ˆ 
¯ ˜ = e0

A

r 2 - e0

B

r 2 sinf

2.2.1.  The curl of E

Consider a charge distribution r(r).  The electric field at a point P generated by this charge

distribution is equal to

E r ( ) =
1

4pe0

Dˆ r 

Dr( )2 r r '( )Ú dt '

where Dr = r - r '.  The curl of E  is equal to

— ¥ E r ( ) =
1

4pe0

— ¥
Dˆ r 

Dr( )2

Ê 
Ë Á 

ˆ 
¯ ˜ r r '( )Ú dt '
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However, — ¥ ˆ r / r 2 = 0 for every vector r  and we thus conclude that

— ¥ E r ( ) = 0

2.2.2.  Applications of Gauss's law

Although Gauss's law is always true it is only a useful tool to calculate the electric field if the

charge distribution is symmetric:

1. If the charge distribution has spherical symmetry, then Gauss's law can be used with

concentric spheres as Gaussian surfaces.

2. If the charge distribution has cylindrical symmetry, then Gauss's law can be used with

coaxial cylinders as Gaussian surfaces.

3. If the charge distribution has plane symmetry, then Gauss's law can be used with pill boxes

as Gaussian surfaces.

Example:  Problem 2.12

Use Gauss's law to find the electric field inside a uniformly charged sphere (charge density r)

of radius R.

The charge distribution has spherical symmetry and consequently the Gaussian surface used

to obtain the electric field will be a concentric sphere of radius r.  The electric flux through this

surface is equal to

F E = E ∑ da 
Surface

Ú = 4pr 2E r( )

The charge enclosed by this Gaussian surface is equal to

QEnclosed =
4

3
pr 3r

Applying Gauss's law we obtain for the electric field:
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E r( ) =
1

4pr 2

QEnclosed

e0

=
1

4pr 2

4
3

pr 3r

e0

=
r

3e0

r

Example:  Problem 2.14

Find the electric field inside a sphere which carries a charge density proportional to the

distance from the origin: r = k r, for some constant k.

The charge distribution has spherical symmetry and we will therefore use a concentric sphere

of radius r as a Gaussian surface.  Since the electric field depends only on the distance r, it is

constant on the Gaussian surface.  The electric flux through this surface is therefore equal to

F E = E ∑ da 
Surface

Ú = 4pr 2E r( )

The charge enclosed by the Gaussian surface can be obtained by integrating the charge

distribution between r' = 0 and r' = r:

QEnclosed = r r '( )dt
Volume

Ú = kr ' 4pr '2( )dr '
0

r

Ú = pkr4

Applying Gauss's law we obtain:

F E = 4pr 2E r( ) =
QEnclosed

e0

=
pkr4

e0

or

E r( ) =

pkr4

e0

Ê 
Ë Á 

ˆ 
¯ ˜ 

4pr 2 =
1

4e0

kr2

Example:  Problem 2.16

A long coaxial cable carries a uniform (positive) volume charge density r on the inner

cylinder (radius a), and uniform surface charge density on the outer cylindrical shell (radius b).

The surface charge is negative and of just the right magnitude so that the cable as a whole is

neutral.  Find the electric field in each of the three regions: (1) inside the inner cylinder (r < a),

(2) between the cylinders (a < r < b), (3) outside the cable (b < r).
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The charge distribution has cylindrical symmetry and to apply Gauss's law we will use a

cylindrical Gaussian surface.  Consider a cylinder of radius r and length L.  The electric field

generated by the cylindrical charge distribution will be radially directed.  As a consequence,

there will be no electric flux going through the end caps of the cylinder (since here E ̂ da ).  The

total electric flux through the cylinder is equal to

F E = E ∑ da 
Surface

Ú = 2prLE r( )

The enclosed charge must be calculated separately for each of the three regions:

1. r < a: QEnclosed = pr 2Lr

2. a < r < b: QEnclosed = pa2Lr

3. b < r: QEnclosed = 0

Applying Gauss's law we find

E r( ) =
1

2prL

QEnclosed

e0

Substituting the calculated Qencl for the three regions we obtain

1. r < a: E r( ) =
1

2prL

QEnclosed

e0

=
1

2prL

pr 2Lr
e0

=
1

2e0

rr .

2. a < r < b: E r( ) =
1

2prL

QEnclosed

e0

=
1

2prL

pa2Lr
e0

=
1

2e0

a2

r
r

3. b < r E r( ) =
1

2prL

QEnclosed

e0

= 0

Example:  Problem 2.18

Two spheres, each of radius R  and carrying uniform charge densities of +r and -r ,

respectively, are placed so that they partially overlap (see Figure 2.6).  Call the vector from the

negative center to the positive center s .  Show that the field in the region of overlap is constant

and find its value.

To calculate the total field generated by this charge distribution we use the principle of

superposition.  The electric field generated by each sphere can be obtained using Gauss' law (see
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Problem 2.12).  Consider an arbitrary point in the overlap region of the two spheres (see Figure

2.7).  The distance between this point and the center of the negatively charged sphere is r-.  The

distance between this point and the center of the positively charged sphere is r+.  Figure 2.7

shows that the vector sum of s  and r +  is equal to r - .  Therefore,

r + - r - = -s 

The total electric field at this point in the overlap region is the vector sum of the field due to the

positively charged sphere and the field due to the negatively charged sphere:

E tot =
r
3e0

r + - r -( )

-

+
s

Figure 2.6.  Problem 2.18.

-

+
s

E+

E-
Etot

q

Figure 2.7.  Calculation of Etot.
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The minus sign in front of r -  shows that the electric field generated by the negatively charged

sphere is directed opposite to r - .  Using the relation between r +  and r -  obtained from Figure 2.7

we can rewrite E tot  as

E tot = -
r
3e0

s 

which shows that the field in the overlap region is homogeneous and pointing in a direction

opposite to s .

2.3.  The Electric Potential

The requirement that the curl of the electric field is equal to zero limits the number of vector

functions that can describe the electric field.  In addition, a theorem discussed in Chapter 1 states

that any vector function whose curl is equal to zero is the gradient of a scalar function.  The

scalar function whose gradient is the electric field is called the electric potential V and it is

defined as

E = -— V

Taking the line integral of — V  between point a and point b we obtain

— V ∑ dl 
a

b

Ú = V b( ) - V a( ) = - E ∑ dl 
a

b

Ú

Taking a to be the reference point and defining the potential to be zero there, we obtain for V(b)

V b( ) = - E ∑ dl 
a

b

Ú

The choice of the reference point a of the potential is arbitrary.  Changing the reference point of

the potential amounts to adding a constant to the potential:

V ' b( ) = - E ∑ dl 
a '

b

Ú = - E ∑ dl 
a '

a

Ú - E ∑ dl 
a

b

Ú = K + V b( )

where K is a constant, independent of b, and equal to

K = - E ∑ dl 
a '

a

Ú

However, since the gradient of a constant is equal to zero
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E'= -— V '= - — V = E

Thus, the electric field generated by V' is equal to the electric field generated by V.  The physical

behavior of a system will depend only on the difference in electric potential and is therefore

independent of the choice of the reference point.  The most common choice of the reference

point in electrostatic problems is infinity and the corresponding value of the potential is usually

taken to be equal to zero:

V b( ) = - E ∑ dl 
•

b

Ú

The unit of the electrical potential is the Volt (V, 1V = 1 Nm/C).

Example:  Problem 2.20

One of these is an impossible electrostatic field.  Which one?

a) E = k xy( )ˆ i + 2yz( )ˆ j + 3xz( )ˆ k [ ]
b) E = k y2( )ˆ i + 2xy + z 2( )ˆ j + 2yz( )ˆ k [ ]
Here, k is a constant with the appropriate units.  For the possible one, find the potential, using the

origin as your reference point.  Check your answer by computing — V .

a) The curl of this vector function is equal to

— ¥ E = k
∂

∂y
3xz( ) -

∂
∂z

2yz( )Ê 
Ë Á 

ˆ 
¯ ˜ ˆ i + k

∂
∂z

xy( ) -
∂

∂x
3xz( )Ê 

Ë 
ˆ 
¯ 

ˆ j +

k
∂

∂x
2yz( ) -

∂
∂y

xy( )Ê 
Ë Á 

ˆ 
¯ ˜ = k -2yˆ i - 3zˆ j - xˆ k ( )

Since the curl of this vector function is not equal to zero, this vector function can not describe an

electric field.

b) The curl of this vector function is equal to

— ¥ E = k
∂

∂y
2yz( ) -

∂
∂z

2xy + z 2( )Ê 
Ë Á 

ˆ 
¯ ˜ ˆ i + k

∂
∂z

y2( ) -
∂

∂x
2yz( )Ê 

Ë 
ˆ 
¯ 

ˆ j +

k
∂

∂x
2xy + z 2( ) -

∂
∂y

y2( )Ê 
Ë Á 

ˆ 
¯ ˜ = 0
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Since the curl of this vector function is equal to zero it can describe an electric field.  To

calculate the electric potential V at an arbitrary point (x, y, z), using (0, 0, 0) as a reference point,

we have to evaluate the line integral of E  between (0, 0, 0) and (x, y, z).  Since the line integral

of E  is path independent we are free to choose the most convenient integration path.  I will use

the following integration path:

0, 0, 0 Æ x , 0, 0 Æ x , y , 0 Æ x , y , z

The first segment of the integration path is along the x axis:

dl = dxˆ i 

and

E ∑ dl = ky2dx = 0

since y = 0 along this path.  Consequently, the line integral of E  along this segment of the

integration path is equal to zero.  The second segment of the path is parallel to the y axis:

dl = dŷ  j 

and

E ∑ dl = k 2xy + z 2( )dy = 2kxydy

since z = 0 along this path.  The line integral of E  along this segment of the integration path is

equal to

E ∑ dl 
(x, 0,0)

(x,y, 0)

Ú = 2kxydy
0

y

Ú = kxy2

The third segment of the integration path is parallel to the z axis:

dl = dz ˆ k 

and

E ∑ dl = 2k yz( )dz

The line integral of E  along this segment of the integration path is equal to
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E ∑ dl 
(x, y, 0)

(x,y, z)

Ú = 2k yz( )dz
0

z

Ú = kyz2

The electric potential at (x, y, z) is thus equal to

V x,y,z( ) = - E ∑ dl 
(0,0,0)

(x, 0,0)

Ú - E ∑ dl 
(x, 0,0)

(x, y, 0)

Ú - E ∑ dl 
(x, y, 0)

(x, y, z)

Ú =

= 0 - kxy2 - kyz2 = -k xy2 + yz2( )

The answer can be verified by calculating the gradient of V:

— V =
∂V

∂x
ˆ i +

∂V

∂y
ˆ j +

∂V

∂z
ˆ k = -k y2ˆ i + 2xy + z 2( ) ˆ j + 2yz( ) ˆ k ( ) = -E 

which is the opposite of the original electric field E .

The advantage of using the electric potential V instead of the electric field is that V is a scalar

function.  The total electric potential generated by a charge distribution can be found using the

superposition principle.  This property follows immediately from the definition of V and the fact

that the electric field satisfies the principle of superposition.  Since

E = E 1 + E 2 + E 3 + .....

it follows that

V = - E ∑ dl 
•

b

Ú = - E 1 ∑ dl 
•

b

Ú - E 2 ∑ dl 
•

b

Ú - E 3 ∑ dl 
•

b

Ú - ... = V1 + V2 + V3 + ....

This equation shows that the total potential at any point is the algebraic sum of the potentials at

that point due to all the source charges separately.  This ordinary sum of scalars is in general

easier to evaluate then a vector sum.

Example:  Problem 2.46

Suppose the electric potential is given by the expression

V r ( ) = A
e-lr

r

for all r (A and l are constants).  Find the electric field E r ( ) , the charge density r r ( ) , and the

total charge Q.
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The electric field E r ( )  can be immediately obtained from the electric potential:

E r ( ) = - — V r ( ) = -
∂

∂r
A

e-lr

r

Ê 
Ë Á 

ˆ 
¯ ˜ ˆ r = lA

e-lr

r
+ A

e-lr

r 2

Ê 
Ë Á 

ˆ 
¯ ˜ ˆ r 

The charge density r r ( )  can be found using the electric field E r ( )  and the following relation:

— ∑ E r ( ) =
r r ( )

e0

This expression shows that

r r ( ) = e0 — ∑ E r ( )[ ]

Substituting the expression for the electric field E r ( )  we obtain for the charge density r r ( ) :

r r ( ) = e0A — ∑ 1 + lr( )e-lr ˆ r 

r 2

Ê 
Ë Á 

ˆ 
¯ ˜ 

È 

Î 
Í 

˘ 

˚ 
˙ =

= e0A 1 + lr( )e-lr — ∑
ˆ r 

r 2

Ê 
Ë Á 

ˆ 
¯ ˜ +

ˆ r 

r 2 ∑ — 1 + lr( )e-lr( )È 

Î 
Í 

˘ 

˚ 
˙ =

= e0A 4p 1 + lr( )e-lrd 3 r ( ) -
l2e-lr

r

È 

Î 
Í 

˘ 

˚ 
˙ = e0A 4pd 3 r ( ) -

l2e-lr

r

È 

Î 
Í 

˘ 

˚ 
˙ 

The total charge Q can be found by volume integration of r r ( ) :

Qtot = r r ( )dt
Volume

Ú = e0A 4pd 3 r ( ) -
l2e-lr

r

È 

Î 
Í 

˘ 

˚ 
˙ 4pr 2dr

0

•

Ú =

= 4pe0A 4pd 3 r ( )r 2dr
0

•

Ú - rl2e-lr dr
0

•

ÚÈ 
Î Í 

˘ 
˚ ˙ =

= -4pe0A rl2e-lr dr
0

•

Ú

The integral can be solved easily:

re -lr dr
0

•

Ú = -
d

dl
e-lr dr

0

•

Ú = -
d

dl
1

l
Ê 
Ë 

ˆ 
¯ =

1

l2

The total charge is thus equal to
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Qtot = -4pe0A

The charge distribution r r ( )  can be directly used to obtained from the electric potential

V r ( )

r r ( ) = e0 — ∑ E r ( )[ ] = -e0 — ∑ — V r ( )[ ] = -e0 — 2V r ( )

This equation can be rewritten as

— 2V r ( ) = -
r r ( )

e0

and is known as Poisson's equation.  In the regions where r r ( ) = 0 this equation reduces to

Laplace's equation:

— 2V r ( ) = 0

The electric potential generated by a discrete charge distribution can be obtained using the

principle of superposition:

Vtot r ( ) = Vi r ( )
i =1

n

Â

where Vi r ( )  is the electric potential generated by the point charge qi .  A point charge qi  located

at the origin will generate an electric potential Vi r ( )  equal to

Vi r ( ) = -
1

4pe0

qi

r '2
dr'

•

r

Ú =
1

4pe0

qi

r

In general, point charge qi  will be located at position r i  and the electric potential generated by

this point charge at position r  is equal to

Vi r ( ) =
1

4pe0

qi

r - r i

The total electric potential generated by the whole set of point charges is equal to

Vtot r ( ) =
1

4pe0

qi

r - r ii =1

n

Â
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To calculate the electric potential generated by a continuous charge distribution we have to

replace the summation over point charges with an integration over the continuous charge

distribution.  For the three charge distributions we will be using in this course we obtain:

1. line charge l :  Vtot r ( ) =
1

4pe0

l
r - r '

dl '
Line
Ú

2. surface charge s :  Vtot r ( ) =
1

4pe0

s
r - r '

da '
Surface

Ú

3. volume charge r :  Vtot r ( ) =
1

4pe0

r
r - r '

dt '
Volume

Ú

Example:  Problem 2.25

Using the general expression for V in terms of r find the potential at a distance z above the

center of the charge distributions of Figure 2.8.  In each case, compute E = -— V .  Suppose that

we changed the right-hand charge in Figure 2.8a to -q.  What is then the potential at P?  What

field does this suggest?  Compare your answer to Problem 2.2b, and explain carefully any

discrepancy.

P

z

c)

R
s

P

z

a)

q q

d

P

z

b)

l
2L

Figure 2.8.  Problem 2.35.

a) The electric potential at P generated by the two point charges is equal to



-  21  -

V =
1

4pe0

q

1

4
d2 + z 2

+
1

4pe0

q

1

4
d2 + z 2

=
1

2pe0

q

1

4
d2 + z 2

The electric field generated by the two point charges can be obtained by taking the gradient of

the electric potential:

E = -— V = -
∂

∂z

1

2pe0

q

1

4
d2 + z 2

Ê 

Ë 

Á 
Á 
Á Á 

ˆ 

¯ 

˜ 
˜ 
˜ ˜ 

ˆ k =
1

2pe0

qz

1
4

d2 + z 2Ê 
Ë 

ˆ 
¯ 

3/ 2
ˆ k 

If we change the right-hand charge to -q then the total potential at P is equal to zero.  However,

this does not imply that the electric field at P is equal to zero.  In our calculation we have

assumed right from the start that x = 0 and y = 0.  Obviously, the potential at P will therefore not

show an x and y dependence.  This however not necessarily indicates that the components of the

electric field along the x and y direction are zero.  This can be demonstrated by calculating the

general expression for the electric potential of this charge distribution at an arbitrary point (x,y,z):

V x,y,z( ) =
1

4pe0

q

x +
1
2

d
Ê 
Ë 

ˆ 
¯ 

2

+ y2 + z 2

+
1

4pe0

-q

x -
1
2

d
Ê 
Ë 

ˆ 
¯ 

2

+ y2 + z 2

=

=
q

4pe0

1

x +
1

2
d

Ê 
Ë 

ˆ 
¯ 

2

+ y2 + z 2

-
q

4pe0

1

x -
1

2
d

Ê 
Ë 

ˆ 
¯ 

2

+ y2 + z 2

The various components of the electric field can be obtained by taking the gradient of this

expression:

E x x,y,z( ) = -
∂V

∂x
=

q

4pe0

x +
1

2
d

Ê 
Ë 

ˆ 
¯ 

x +
1

2
d

Ê 
Ë 

ˆ 
¯ 

2

+ y2 + z 2
Ê 
Ë Á 

ˆ 
¯ ˜ 

3/ 2 -
q

4pe0

x -
1

2
d

Ê 
Ë 

ˆ 
¯ 

x -
1

2
d

Ê 
Ë 

ˆ 
¯ 

2

+ y2 + z 2
Ê 
Ë Á 

ˆ 
¯ ˜ 

3/ 2

E y x,y,z( ) = -
∂V

∂y
=

q

4pe0

y

x +
1

2
d

Ê 
Ë 

ˆ 
¯ 

2

+ y2 + z 2
Ê 
Ë Á 

ˆ 
¯ ˜ 

3/ 2 -
q

4pe0

y

x -
1

2
d

Ê 
Ë 

ˆ 
¯ 

2

+ y2 + z 2
Ê 
Ë Á 

ˆ 
¯ ˜ 

3/ 2
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E z x,y,z( ) = -
∂V

∂z
=

q

4pe0

z

x +
1

2
d

Ê 
Ë 

ˆ 
¯ 

2

+ y2 + z 2
Ê 
Ë Á 

ˆ 
¯ ˜ 

3/ 2 -
q

4pe0

z

x -
1

2
d

Ê 
Ë 

ˆ 
¯ 

2

+ y2 + z 2
Ê 
Ë Á 

ˆ 
¯ ˜ 

3/ 2

The components of the electric field at P = (0, 0, z) can now be calculated easily:

E x 0,0,z( ) =
q

4pe0

d

1
4

d2 + z 2Ê 
Ë 

ˆ 
¯ 

3/ 2

E y 0,0,z( ) = 0

E z 0,0,z( ) = 0

b) Consider a small segment of the rod, centered at position x and with length dx.  The charge

on this segment is equal to ldx.  The potential generated by this segment at P is equal to

dV =
1

4pe0

ldx

x2 + z 2

The total potential generated by the rod at P can be obtained by integrating dV between x = - L

and x = L

V =
1

4pe0

ldx

x2 + z 2-L

L

Ú =
l

4pe0

ln L2 + z 2 + L( ) - ln L2 + z 2 - L( )[ ]
The z component of the electric field at P can be obtained from the potential V by calculating the

z component of the gradient of V.  We obtain

Ez x,y,z( ) = -
l

4pe0

∂
∂z

ln L2 + z 2 + L( ) - ln L2 + z 2 - L( )[ ] =

= -
l

4pe0

z

L2 + z 2

L2 + z 2 + L
-

z

L2 + z 2

L2 + z 2 - L

È 

Î 

Í 
Í 
Í 
Í 

˘ 

˚ 

˙ 
˙ 
˙ 
˙ 

=
l

4pe0

2L

z L2 + z 2

c) Consider a ring of radius r and width dr.  The charge on this ring is equal to

dq = s p r + dr( )2 - pr 2[ ] = 2p ◊ s ◊ rdr
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The electric potential dV at P generated by this ring is equal to

dV =
1

4pe0

dq

r 2 + z 2
=

s
2e0

rdr

r 2 + z 2

The total electric potential at P can be obtained by integrating dV between r = 0 and r = R:

V =
s
2e0

rdr

r 2 + z 20

R

Ú =
s
2e0

R2 + z 2 - z[ ]
The z component of the electric field generated by this charge distribution can be obtained by

taking the gradient of V:

Ez = -
s
2e0

∂
∂z

R2 + z 2 - z[ ] = -
s
2e0

z

R2 + z 2
-1

È 

Î 
Í 
Í 

˘ 

˚ 
˙ 
˙ 

Example:  Problem 2.5

Find the electric field a distance z above the center of a circular loop of radius r, which

carries a uniform line charge l.

The total charge Q on the ring is equal to

Q = 2pRl

The total electric potential V at P is equal to

V =
1

4pe0

2pRl
R2 + z 2

=
l

2e0

R

R2 + z 2

The z component of the electric field at P can be obtained by calculating the gradient of V:

Ez = -
l
2e0

∂
∂z

R

R2 + z 2
=

l
2e0

Rz

R2 + z 2( )3/ 2

This is the same answer we obtained in the beginning of this Chapter by taking the vector sum of

the segments of the ring.

We have seen so far that there are three fundamental quantities of electrostatics:
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1. The charge density r

2. The electric field E

3. The electric potential V

If one of these quantities is known, the others can be calculated:

Known Ø r E V

r E =
1

4pe0

ˆ r 

r 2 rdtÚ V =
1

4pe0

r
r

dtÚ
E r = e0— ∑ E V = - E ∑ dl Ú
V r = -e0 — 2V E = -— V

In general the charge density r and the electric field E  do not have to be continuous.  Consider

for example an infinitesimal thin charge sheet with surface charge s.  The relation between the

electric field above and below the sheet can be obtained using Gauss's law.  Consider a

rectangular box of height e and area A (see Figure 2.9).  The electric flux through the surface of

the box, in the limit e Æ 0, is equal to

F E = E ∑ da 
Surface

Ú = E^above - E^below( )A

Eabove

Ebelows

A e

Figure 2.9.  Electric field near a charge sheet.
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where E^,above  and E^,below  are the perpendicular components of the electric field above and

below the charge sheet.  Using Gauss's law and the rectangular box shown in Figure 2.9 as

integration volume we obtain

Qencl

e0

=
sA

e0

= E^, above - E^, below( )A

This equation shows that the electric field perpendicular to the charge sheet is discontinuous at

the boundary.  The difference between the perpendicular component of the electric field above

and below the charge sheet is equal to

E^,above - E^, below =
s
e0

The tangential component of the electric field is always continuous at any boundary.  This

can be demonstrated by calculating the line integral of E  around a rectangular loop of length L

and height e (see Figure 2.10).  The line integral of E , in the limit e Æ 0, is equal to

E ∑ dl Ú = E ||,above ∑ dl Ú + E ||,below ∑ dl Ú = E||,above - E||,below( )L

Eabove

Ebelows

e

L

Figure 2.10.  Parallel field close to charge sheet.

Since the line integral of E  around any closed loop is zero we conclude that

E||,above - E||,below( )L = 0

or

E||,above = E||,below

These boundary conditions for E  can be combined into a single formula:
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E above - E below =
s
e0

ˆ n 

where ˆ n  is a unit vector perpendicular to the surface and pointing towards the above region.

The electric potential is continuous across any boundary.  This is a direct results of the

definition of V in terms of the line integral of E :

Vabove - Vbelow = E ∑ dl 
above

below

Ú

If the path shrinks the line integral will approach zero, independent of whether E  is continuous

or discontinuous.  Thus

Vabove = Vbelow

Example:  Problem 2.30

a) Check that the results of examples 4 and 5 of Griffiths are consistent with the boundary

conditions for E .

b) Use Gauss's law to find the field inside and outside a long hollow cylindrical tube which

carries a uniform surface charge s.  Check that your results are consistent with the boundary

conditions for E .

c) Check that the result of example 7 of Griffiths is consistent with the boundary conditions for

V.

a) Example 4 (Griffiths):  The electric field generated by an infinite plane carrying a uniform

surface charge s is directed perpendicular to the sheet and has a magnitude equal to

E above =
s
2e0

ˆ k 

E below = -
s
2e0

ˆ k 

Therefore,

E above - E below =
s
e0

ˆ k =
s sheet

e0

ˆ k 

which is in agreement with the boundary conditions for E .
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Example 5 (Griffiths):  The electric field generated by the two charge sheets is directed

perpendicular to the sheets and has a magnitude equal to

E I = 0

E II =
s
e0

ˆ i 

E III = 0

The change in the strength of the electric field at the left sheet is equal to

E II - E I =
s
e0

ˆ i =
s left

e0

ˆ i 

The change in the strength of the electric field at the right sheet is equal to

E III - E II = -
s
e0

ˆ i =
s right

e0

ˆ i 

These relations show agreement with the boundary conditions for E .

b) Consider a Gaussian surface of length L and radius r.  As a result of the symmetry of the

system, the electric field will be directed radially.  The electric flux through this Gaussian

surface is therefore equal to the electric flux through its curved surface which is equal to

F E = E ∑ da Ú = 2p r L E r( )

The charge enclosed by the Gaussian surface is equal to zero when r < R.  Therefore

E r ( ) = 0

when r < R.  When r > R the charge enclosed by the Gaussian surface is equal to

Qenclosed = 2p R L s

The electric field for r > R, obtained using Gauss' law, is equal to

E r ( ) =
1

2p r L

Qenclosed

e0

ˆ r =
s
e0

R

r
ˆ r 

The magnitude of the electric field just outside the cylinder, directed radially, is equal to



-  28  -

E outside = E R ( ) =
s
e0

ˆ r 

The magnitude of the electric field just inside the cylinder is equal to

E inside = 0

Therefore,

E outside - E inside =
s
e0

ˆ r 

which is consistent with the boundary conditions for E.

c) Example 7 (Griffiths):  the electric potential just outside the charged spherical shell is equal

to

Voutside = Voutside z = R( ) =
R2s
e0 R

=
s R

e0

The electric potential just inside the charged spherical shell is equal to

Vinside = Vinside z = R( ) =
s R

e0

These two equations show that the electric potential is continuous at the boundary.

2.4.  Work and Energy in Electrostatics

Consider a point charge q1 located at the origin.  A point charge q2 is moved from infinity to

a point a distance r2 from the origin.  We will assume that the point charge q1 remains fixed at

the origin when point charge q2 is moved.  The force exerted by q1 on q2 is equal to

F 12 = q2E 1

where E 1 is the electric field generated by q1.  In order to move charge q2 we will have to exert a

force opposite to F 12 .  Therefore, the total work that must be done to move q2 from infinity to r2

is equal to
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W = - F 12 ∑ dl 
•

r2

Ú = - q2E 1 ∑ dl 
•

r2

Ú = q2V1 r 2( )

where V1 r 2( )  is the electric potential generated by q1 at position r2.  Using the equation of V for a

point charge, the work W can be rewritten as

W =
1

4pe0

q1 q2

r2

This work W is the work necessary to assemble the system of two point charges and is also called

the electrostatic potential energy of the system.  The energy of a system of more than two point

charges can be found in a similar manner using the superposition principle.  For example, for a

system consisting of three point charges (see Figure 2.11) the electrostatic potential energy is

equal to

W =
1

4pe0

q1 q2

r12

+
q1 q3

r13

+
q2 q3

r23

Ï 
Ì 
Ó 

¸ 
˝ 
˛ 

q1

q3

q2
r23

r12
r13

Figure 2.11.  System of three point charges.

In this equation we have added the electrostatic energies of each pair of point charges.  The

general expression of the electrostatic potential energy for n point charges is

W =
1

4pe0 i =1

n

Â
qi  qj

rijj =i +1

n

Â

The lower limit of j (= i + 1) insures that each pair of point charges is only counted once.  The

electrostatic potential energy can also be written as
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W =
1

2

1

4pe0 i =1

n

Â
qi  qj

rijj =1
j πi

n

Â
È 

Î 

Í 
Í 
Í 

˘ 

˚ 

˙ 
˙ 
˙ 

=
1

2
qi

i =1

n

Â 1

4pe0

 qj

rij

=
1

2
qiVi

i =1

n

Â
j =1
j πi

n

Â

where Vi is the electrostatic potential at the location of qi due to all other point charges.

When the charge of the system is not distributed as point charges, but rather as a continuous

charge distribution r, then the electrostatic potential energy of the system must be rewritten as

W =
1

2
rVdt

Volume
Ú

For continuous surface and line charges the electrostatic potential energy is equal to

W =
1

2
sVda

Surface
Ú

and

W =
1

2
lVdl

Line
Ú

However, we have already seen in this Chapter that r, V , and E  carry the same equivalent

information.  The charge density r, for example, is related to the electric field E :

r = e0 — ∑ E ( )

Using this relation we can rewrite the electrostatic potential energy as

W =
e0

2
— ∑ E ( )Vdt

Volume
Ú =

e0

2
— ∑ VE ( )( )dt

Volume
Ú -

e0

2
E ∑ — V( )( )dt

Volume
Ú =

=
e0

2
VE ∑ da 

Surface
Ú +

e0

2
E ∑ E ( )dt

Volume
Ú

where we have used one of the product rules of vector derivatives and the definition of E  in

terms of V.  In deriving this expression we have not made any assumptions about the volume

considered.  This expression is therefore valid for any volume.  If we consider all space, then the

contribution of the surface integral approaches zero since VE  will approach zero faster than 1/r2.

Thus the total electrostatic potential energy of the system is equal to
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W =
e0

2
E2dt

Volume
Ú

Example:  Problem 2.45

A sphere of radius R carries a charge density r r ( ) = k r  (where k is a constant).  Find the

energy of the configuration.  Check your answer by calculating it in at least two different ways.

Method 1:

The first method we will use to calculate the electrostatic potential energy of the charged

sphere uses the volume integral of E2 to calculate W.  The electric field generated by the charged

sphere can be obtained using Gauss's law.  We will use a concentric sphere of radius r as the

Gaussian surface.  First consider the case in which r < R.  The charge enclosed by the Gaussian

surface can be obtained by volume integration of the charge distribution:

QEnclosed = r r ( )dt
Sphere

Ú = 4p k r r 2dr
0

r

Ú = p k r4

The electric flux through the Gaussian surface is equal to

F E = 4p r 2E r( )

Applying Gauss's law we find for the electric field inside the sphere (r < R):

E r( ) =
1

4p r 2

QEnclosed

e0

=
1

4p r 2

p k r4

e0

=
k r2

4e0

The electric field outside the sphere (r > R) can also be obtained using Gauss's law:

E r( ) =
1

4p r 2

QEnclosed

e0

=
1

4p r 2

p k R4

e0

=
k R4

4e0 r
2

The total electrostatic energy can be obtained from the electric field:

W =
1
2

e0 E2 r( )dt
All Space

Ú = 2pe0

k r2

4e0

È 

Î 
Í 

˘ 

˚ 
˙ 

2

r 2dr
0

R

Ú + 2pe0

k R4

4e0 r
2

È 

Î 
Í 

˘ 

˚ 
˙ 

2

r 2dr
0

R

Ú =

=
pk2

8e0

r 6dr
0

R

Ú +
pk2

8e0

R8

r 2 dr
R

•

Ú =
pk2

8e0

1

7
R7 + R7È 

Î Í 
˘ 
˚ ˙ =

pk2R7

7e0
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Method 2:

An alternative way calculate the electrostatic potential energy is to use the following relation:

W =
1

2
rVdt

Volume
Ú

The electrostatic potential V can be obtained immediately from the electric field E .  To evaluate

the volume integral of rV  we only need to know the electrostatic potential V inside the charged

sphere:

V r ( ) = - E ∑ dl 
•

r

Ú = -
1

4e0

k R4

 r 2 dr
•

R

Ú + kr2dr
R

r

Ú
È 

Î 
Í 

˘ 

˚ 
˙ =

k

12e0

4R3 - r 3( )

The electrostatic potential energy of the system is thus equal to

W =
1

2
r r ( )V r ( )dt

Sphere
Ú =

4p
2

k r
k

12e0

4R3 - r 3( )r 2dr
0

R

Ú =
4p
2

k2

12e0

R7 -
1

7
R7Ê 

Ë 
ˆ 
¯ =

p k2

7e0

R7

which is equal to the energy calculated using method 1.

2.5.  Metallic Conductors

In a metallic conductor one or more electrons per atom are free to move around through the

material.  Metallic conductors have the following electrostatic properties:

1. The electric field inside the conductor is equal to zero.

If there would be an electric field inside the conductor, the free charges would move and

produce an electric field of their own opposite to the initial electric field.  Free charges will

continue to flow until the cancellation of the initial field is complete.

2. The charge density inside a conductor is equal to zero.

This property is a direct result of property 1.  If the electric field inside a conductor is equal

to zero, then the electric flux through any arbitrary closed surface inside the conductor is

equal to zero.  This immediately implies that the charge density inside the conductor is equal

to zero everywhere (Gauss's law).

3. Any net charge of a conductor resides on the surface.
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Since the charge density inside a conductor is equal to zero, any net charge can only reside

on the surface.

4. The electrostatic potential V is constant throughout the conductor.

Consider two arbitrary points a and b inside a conductor (see Figure 2.12).  The potential

difference between a and b is equal to

V b( ) - V a( ) = - E ∑ dl 
a

b

Ú

a

b

Figure 2.12.  Potential inside metallic conductor.

Since the electric field inside a conductor is equal to zero, the line integral of E  between a

and b is equal to zero.  Thus

V b( ) - V a( ) = 0

or

V b( ) = V a( )

5. The electric field is perpendicular to the surface, just outside the conductor.

If there would be a tangential component of the electric field at the surface, then the surface

charge would immediately flow around the surface until it cancels this tangential component.

Example:  A spherical conducting shell

a) Suppose we place a point charge q at the center of a neutral spherical conducting shell (see

Figure 2.13).  It will attract negative charge to the inner surface of the conductor.  How much

induced charge will accumulate here?

b) Find E and V as function of r in the three regions r < a, a < r < b, and r > b.
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a

b
q

Figure 2.13. A spherical conducting shell.

a) The electric field inside the conducting shell is equal to zero (property 1 of conductors).

Therefore, the electric flux through any concentric spherical Gaussian surface of radius r (a<r<b)

is equal to zero.  However, according to Gauss's law this implies that the charge enclosed by this

surface is equal to zero.  This can only be achieved if the charge accumulated on the inside of the

conducting shell is equal to -q.  Since the conducting shell is neutral and any net charge must

reside on the surface, the charge on the outside of the conducting shell must be equal to +q.

b) The electric field generated by this system can be calculated using Gauss's law.  In the three

different regions the electric field is equal to

E r( ) =
1

4pe0

q

r 2 for b < r

E r( ) = 0 for a < r < b

E r( ) =
1

4pe0

q

r 2 for r < a

The electrostatic potential V(r) can be obtained by calculating the line integral of E  from infinity

to a point a distance r from the origin.  Taking the reference point at infinity and setting the value

of the electrostatic potential to zero there we can calculate the electrostatic potential.  The line

integral of E  has to be evaluated for each of the three regions separately.

For b < r:

V r( ) = - E r( ) ∑ dl 
•

r

Ú = -
1

4pe0

q

r '2
dr '

•

r

Ú =
1

4pe0

q

r
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For a < r < b:

V r( ) = - E r( ) ∑ dl 
•

r

Ú = -
1

4pe0

q

r '2
dr '

•

b

Ú =
1

4pe0

q

b

For r < a:

V r( ) = - E r( ) ∑ dl 
•

r

Ú = -
1

4pe0

q

r '2
dr '-

1

4pe0

q

r '2
dr '

a

r

Ú•

b

Ú =
1

4pe0

q

b
-

q

a
+

q

r
È 
Î Í 

˘ 
˚ ˙ 

q

Figure 2.14.  Arbitrarily shaped conductor.

In this example we have looked at a symmetric system but the general conclusions are also valid

for an arbitrarily shaped conductor.  For example, consider the conductor with a cavity shown in

Figure 2.14.  Consider also a Gaussian surface that completely surrounds the cavity (see for

example the dashed line in Figure 2.14).  Since the electric field inside the conductor is equal to

zero, the electric flux through the Gaussian surface is equal to zero.  Gauss's law immediately

implies that the charge enclosed by the surface is equal to zero.  Therefore, if there is a charge q

inside the cavity there will be an induced charge equal to -q on the walls of the cavity.  On the

other hand, if there is no charge inside the cavity then there will be no charge on the walls of the

cavity.  In this case, the electric field inside the cavity will be equal to zero.  This can be

demonstrated by assuming that the electric field inside the cavity is not equal to zero.  In this

case, there must be at least one field line inside the cavity.  Since field lines originate on a

positive charge and terminate on a negative charge, and since there is no charge inside the cavity,

this field line must start and end on the cavity walls (see for example Figure 2.15).  Now

consider a closed loop, which follows the field line inside the cavity and has an arbitrary shape

inside the conductor (see Figure 2.15).  The line integral of E  inside the cavity is definitely not

equal to zero since the magnitude of E  is not equal to zero and since the path is defined such that

E  and dl  are parallel.  Since the electric field inside the conductor is equal to zero, the path
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integral of E  inside the conductor is equal to zero.  Therefore, the path integral of E  along the

path indicated in Figure 2.15 is not equal to zero if the magnitude of E  is not equal to zero inside

the cavity.  However, the line integral of E  along any closed path must be equal to zero and

consequently the electric field inside the cavity must be equal to zero.

Figure 2.15.  Field line in cavity.

Example:  Problem 2.35

A metal sphere of radius R, carrying charge q, is surrounded by a thick concentric metal shell

(inner radius a, outer radius b, see Figure 2.16).  The shell carries no net charge.

a) Find the surface charge density s at R, at a, and at b.

b) Find the potential at the center of the sphere, using infinity as reference.

c) Now the outer surface is touched to a grounding wire, which lowers its potential to zero

(same as at infinity).  How do your answers to a) and b) change?

a) Since the net charge of a conductor resides on its surface, the charge q of the metal sphere

will reside its surface.  The charge density on this surface will therefore be equal to

sR =
q

4p R2

As a result of the charge on the metal sphere there will be a charge equal to -q induced on the

inner surface of the metal shell.  Its surface charge density will therefore be equal to

sa =
-q

4p a2

Since the metal shell is neutral there will be a charge equal to +q on the outside of the shell.  The

surface charge density on the outside of the shell will therefore be equal to



-  37  -

sb =
q

4p b2

R

a
b

Figure 2.16.  Problem 2.35.

b) The potential at the center of the metal sphere can be found by calculating the line integral of

E  between infinity and the center.  The electric field in the regions outside the sphere and shell

can be found using Gauss's law.  The electric field inside the shell and sphere is equal to zero.

Therefore,

Vcenter = - E ∑ dl 
•

0

Ú = -
q

4pe0

1

r 2 dr
•

b

Ú -
q

4pe0

1

r 2 dr
a

R

Ú =
q

4pe0

1

b
-

1

a
+

1

R
È 
Î Í 

˘ 
˚ ˙ 

c) When the outside of the shell is grounded, the charge density on the outside will become

zero.  The charge density on the inside of the shell and on the metal sphere will remain the same.

The electric potential at the center of the system will also change as a result of grounding the

outer shell.  Since the electric potential of the outer shell is zero, we do not need to consider the

line integral of E  in the region outside the shell to determine the potential at the center of the

sphere.  Thus

Vcenter = - E ∑ dl 
b

0

Ú = -
q

4pe0

1

r 2 dr
a

R

Ú =
q

4pe0

1

R
-

1

a
È 
Î Í 

˘ 
˚ ˙ 

Consider a conductor with surface charge s, placed in an external electric field.  Because the

electric field inside the conductor is zero, the boundary conditions for the electric field require

that the field immediately above the conductor is equal to
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E above =
s
e0

ˆ n 

dA

Ep,above

Eother

Ep,below

Figure 2.17.  Patch of surface of conductor.

This electric field will exert a force on the surface charge.

Consider a small, infinitely thin, patch of the surface with surface area dA (see Figure 2.17).

The electric field directly above and below the patch is equal to the vector sum of the electric

field generated by the patch, the electric field generated by the rest of the conductor and the

external electric field.  The electric field generated by the patch is equal to

E p, above =
s
e0

ˆ n 

E p, below = -
s
e0

ˆ n 

The remaining field, E other , is continuous across the patch, and consequently the total electric

field above and below the patch is equal to

E above = E other +
s
e0

ˆ n 

E below = E other -
s
e0

ˆ n 

These two equations show that E other  is equal to
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E other =
1

2
E above + E below( )

In this case the electric field below the surface is equal to zero and the electric field above the

surface is directly determined by the boundary condition for the electric field at the surface.

Thus

E other =
1

2

s
e0

ˆ n + 0
Ê 
Ë Á 

ˆ 
¯ ˜ =

s
2e0

ˆ n 

Since the patch cannot exert a force on itself, the electric force exerted on it is entirely due to the

electric field E other .  The charge on the patch is equal to s dA.  Therefore, the force exerted on

the patch is equal to

dF = s dA E other =
s 2

2e0

dA ˆ n 

The force per unit area of the conductor is equal to

f =
dF 

 dA
=

s 2

2e0

ˆ n 

This equation can be rewritten in terms of the electric field just outside the conductor as

f =
1

2e0

e0E( )2
ˆ n =

e0

2
E2 ˆ n 

This force is directed outwards.  It is called the radiation pressure.

2.6.  Capacitors

Consider two conductors (see Figure 2.18), one with a charge equal to +Q and one with a

charge equal to -Q.  The potential difference between the two conductors is equal to

DV = V+ - V- = - E ∑ dl 
-

+

Ú
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Since the electric field E  is proportional to the charge Q, the potential difference DV will also be

proportional to Q.  The constant of proportionality is called the capacitance C of the system and

is defined as

C =
Q

DV

-Q

+Q

Figure 2.18.  Two conductors.

The capacitance C is determined by the size, the shape, and the separation distance of the two

conductors.  The unit of capacitance is the farad (F).  The capacitance of a system of conductors

can in general be calculated by carrying out the following steps:

1. Place a charge +Q on one of the conductors.  Place a charge of -Q on the other conductor (for

a two conductor system).

2. Calculate the electric field in the region between the two conductors.

3. Use the electric field calculated in step 2 to calculate the potential difference between the two

conductors.

4. Apply the result of part 3 to calculate the capacitance:

C =
 Q 

 DV 

We will now discuss two examples in which we follow these steps to calculate the capacitance.

Example:  Example 2.11  (Griffiths)

Find the capacitance of two concentric shells, with radii a and b.

Place a charge +Q on the inner shell and a charge -Q on the outer shell.  The electric field

between the shells can be found using Gauss's law and is equal to
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E r ( ) =
1

4pe0

Q

r 2 ˆ r a < r < b

The potential difference between the outer shell and the inner shell is equal to

V a( ) - V b( ) = - E r ( ) ∑ dl 
a

b

Ú = -
1

4pe0

Q

r 2 dr
a

b

Ú =
Q

4pe0

1

a
-

1

b
Ê 
Ë 

ˆ 
¯ 

The capacitance of this system is equal to

C =
Q

 DV 
=

Q
Q

4pe0

1
a

-
1
b

Ê 
Ë 

ˆ 
¯ 

= 4pe0

ab

b - a

a
b

+Q-Q

Figure 2.19.  Example 2.11.

A system does not have to have two conductors in order to have a capacitance.  Consider for

example a single spherical shell of radius R.  The capacitance of this system of conductors can be

calculated by following the same steps as in Example 12.  First of all, put a charge Q on the

conductor.  Gauss's law can be used to calculate the electric field generated by this system with

the following result:

E r ( ) =
1

4pe0

Q

r 2 ˆ r 

Taking infinity as the reference point we can calculate the electrostatic potential on the surface of

the shell:

V R( ) = - E r ( ) ∑ dl 
•

R

Ú = -
1

4pe0

Q

r 2 dr
•

R

Ú =
1

4pe0

Q

R
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Therefore, the capacitance of the shell is equal to

C =
Q

 DV 
=

Q
1

4pe0

Q
R

= 4pe0R

Let us now consider a parallel-plate capacitor.  The work required to charge up the parallel-

plate capacitor can be calculated in various ways:

Method 1:  Since we are free to chose the reference point and reference value of the potential we

will chose it such that the potential of the positively charges plate is +DV / 2 and the potential of

the negatively charged plate is -DV / 2.  The energy of this charge distribution is then equal to

W =
1

2
rVdtÚ =

1

2
Q

DV

2
+ -Q( ) -DV

2
Ê 
Ë 

ˆ 
¯ 

È 
Î 
Í 

˘ 
˚ 
˙ =

1

2
Q DV( ) =

1

2
C DV( )2

Method 2:  Let us look at the charging process in detail.  Initially both conductors are uncharged

and DV = 0.  At some intermediate step in the charging process the charge on the positively

charged conductor will be equal to q.  The potential difference between the conductors will then

be equal to

DV =
q

C

To increase the charge on the positively charged conductor by dq we have to move this charge

dq across this potential difference DV .  The work required to do this is equal to

dW = DV dq =
q

C
dq

Therefore, the total work required to charge up the capacitor from q = 0 to q = Q is equal to

W =
q

C
dq

0

Q

Ú =
1

2

Q 2

C
=

1

2
C DV( )2

Example:  Problem 2.40.

Suppose the plates of a parallel-plate capacitor move closer together by an infinitesimal

distance e, as a result of their mutual attraction.
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a) Use equation (2.45) of Griffiths to express the amount of work done by electrostatic forces,

in terms of the field E and the area of the plates A.

b) Use equation (2.40) of Griffiths to express the energy lost by the field in this process.

a) We will assume that the parallel-plate capacitor is an ideal capacitor with a homogeneous

electric field E between the plates and no electric field outside the plates.  The electrostatic force

per unit surface area is equal to

f =
e0

2
E2 ˆ n 

The total force exerted on each plate is therefore equal to

F = Af =
e0

2
AE2 ˆ n 

As a result of this force, the plates of the parallel-plate capacitor move closer together by an

infinitesimal distance e.  The work done by the electrostatic forces during this movement is equal

to

W = F ∑ dl Ú =
e0

2
A e E2

b) The total energy stored in the electric field is equal to

W =
e0

2
E2dtÚ

In an ideal capacitor the electric field is constant between the plates and consequently we can

easily evaluate the volume integral of E2:

W =
e0

2
A d E2

where d is the distance between the plates.  If the distance between the plates is reduced, then the

energy stored in the field will also be reduced.  A reduction in d of e will reduce the energy

stored by an amount DW equal to

DW =
e0

2
A d E2 -

e0

2
A d -e( ) E2 =

e0

2
A e E2

which is equal to the work done by the electrostatic forces on the capacitor plates (see part a).


