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Physics 141.
Lecture 22.

Collisions 2023: The Movie.
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Physics 141.
Lecture 22.

• Course Information.

• Entropy.
• Quick review of topics discussed during our last lecture.

• Heat capacity.

• The Maxwell-Boltzmann velocity distribution of gas molecules.
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Analysis of experiment # 5.
Updated Timeline.

• ✔11/14: collisions in the May room
• ✔ 11/20: analysis files available.
• https://www.pas.rochester.edu/~tdimino/phy141/lab05/

• ✔ 11/20: each student has determined his/her 
best estimate of the velocities before and after the 
collisions (analysis during regular lab periods).

• ✔ 11/21: complete discussion and comparison of 
results with colliding partners and submit final 
results (velocities and errors).

• ✔ 11/25: results will be compiled, linear 
momenta and kinetic energies will be determined, 
and results will be distributed.

• 12/4: office hours by lab TA/TIs to help with 
analysis and conclusions.

• 12/6: students submit lab report # 5.
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Distributing 4 units of energy among three 
degrees of freedom.

• Consider an atom with three 
degrees of freedom; each degree 
of freedom has a vibrational 
character with the same 
characteristic frequency.

• For this system we find:
• 3 ways: 4:0:0 configuration.
• 6 ways: 3:1:0 configuration.
• 3 ways: 2:2:0 configuration.
• 3 ways: 1:1:2 configuration.

• What is the probability to see the 
different configurations?
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Distributing energy.
The fundamental assumption.

• In order to determine the probability to observe a certain 
configuration, we rely on the fundamental assumption of 
statistical mechanics to make this determination:
 A fundamental assumption in statistical mechanics is that in our state 

of microscopic ignorance, each microstate (microscopic distribution 
of energy) corresponding to a given macrostate (total energy) is 
equally probable.

• For example N = 3:
• 15 microstates; probability of each one is 1/15.
• 3 ways: 4:0:0 configuration (20% probability).
• 6 ways: 3:1:0 configuration (40% probability).
• 3 ways: 2:2:0 configuration (20% probability).
• 3 ways: 1:1:2 configuration (20% probability).
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Distributing energy.
Achieving equilibrium.

• Consider bringing the two blocks in 
contact when the first block has 90 
quanta of vibrational energy and the 
second block only 10.

• The process of exchange of energy is 
a random (statistical) process, the 
direction of transfer will be in the 
direction in which the number of 
possible states increases.

• The exchange of energy will continue 
even when the most probable 
distribution is reached, but at that 
point there will only be small 
fluctuation around the  most probable 
distribution.
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Distributing energy.
Number of states: different representations.

• Since the number of states of a 
system is enormous (even for 
small system with a few hundred 
oscillators) it is often more 
convenient to look at the natural 
logarithm of the number of states.
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Entropy.
• Since the evolution of the system 

depends on the number of 
microstates, the concept of entropy 
is introduced.

• The entropy S of one of the blocks 
we have been discussing is defined 
as

S = k lnΩ

 where k is the Boltzmann constant 
(1.4 x 10-24 J/K).

• The entropy of the total system is 
the sum of the entropy of the blocks 
that make up the system.
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Entropy and the Second Law of 
Thermodynamics.

• To achieve thermal equilibrium, the 
system will maximize its entropy.

• The most likely evolution of the 
system is the focus of the second 
law of thermodynamics:
 If a closed system is not in 

equilibrium, the most probable 
consequence is that the entropy of 
the system will increase.

• Note: even when the two blocks are 
in thermal equilibrium, there may 
still be exchange of energy between 
the blocks, but the time averaged 
energy exchange will be zero.
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Entropy and the Second Law of 
Thermodynamics.

• If we know the entropy as function 
of for example the number of 
vibrational quanta of block 1, we 
can express the condition for 
equilibrium as

 or

  

dS
dq1

=
dS1

dq1

+
dS2

dq1

= 0

  

dS1

dq1

= −
dS2

dq1
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Entropy and the temperature.

• Since q1 + q2 = constant (assuming 
there is no exchange of energy with 
the environment surrounding the two 
blocks), the condition for equilibrium 
can be rewritten as

• Since thermal equilibrium is achieved 
when the temperature of the blocks 
are the same, the slope of the entropy 
curves must be related to the 
temperature of the blocks.

  

dS1

dq1

=
dS2

dq2
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Entropy and the temperature.

• The temperature of a system is 
defined as

• The temperature defined in this 
manner is expressed in units of Kelvin 
(K) since the internal energy is 
measured in units of Joules and the 
entropy is measured in units of J/K.

• Using the definition of temperature, 
we conclude that block 1 initially has 
a higher temperature than block 2.

  

1
T
=

dS
dEint
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Entropy and temperature.

• The maximum entropy is reached 
when 

 or

• Assuming that each oscillator has 
the same energy quantization, this 
condition is equivalent to

  

dS
dq1

=
dS1

dq1

+
dS2

dq1

= 0

  

dS1

dq1

= −
dS2

dq1

=
dS2

−dq1( ) =
dS2

dq2

  

1
T1

= 1
T2

 ⇔  T1 = T2
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The Boltzmann distribution.
• Question:

 What does the fundamental theory 
of statistical mechanics tell us 
about the probability to see a 
single atom with a specific 
energy?

• Answer:
 A lot.

• Consider a single oscillator in 
contact with 300 other oscillators.

• The entropy of this system is 
equal to the entropy of the 300 
oscillators.

• If the energy of the single 
oscillator increases, the number 
of states decreases.

Energy of
300 oscillators Energy of

1 oscillator
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The Boltzmann distribution.
• The entropy curve is close to 

linear at small ΔE and its slope is 
equal to dS/dE1.

• We can approximate the 
dependence of the entropy on ΔE 
in the following manner:

• The number of states of the 
system, as function of ΔE, can 
now be determined:

  Ω = elnΩ = eS / k = eA/ ke−ΔE / kT

 
S = A− dS

dE ΔE = A− ΔE
T

Energy of
300 oscillators Energy of

1 oscillator
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The Boltzmann distribution.

• Since the probability is 
proportional to the number of 
states, we conclude that:

 the probability of finding a 
microscopic system to be in a 
state with energy ΔE above the 
ground state of the system is 
proportional to e-ΔE/kT.

• This probability distribution is 
called the Boltzmann 
distribution.
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3 Minute 03 Second Intermission. 

• Since paying attention for 1 hour 
and 15 minutes is hard when the 
topic is physics, let’s take a 3 
minute 03 second intermission.

• You can:
• Stretch out.
• Talk to your neighbors.
• Ask me a quick question.
• Enjoy the fantastic music.
• Solve a WeBWorK problem.
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The Boltzmann distribution.

• The energy of a gas molecule can 
have various components: 
• Translational
• Vibrational
• Rotational
• Gravitational

• For each component, the 
probability will show an 
exponential dependence on 
energy.

• I will first focus on the 
translational component.
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The Boltzmann distribution.

• Consider that the gas molecule is 
moving with a velocity vx along 
the x axis.

• The energy of the gas molecule, 
associated with its motion along 
the x axis, will be (1/2)Mvx2.

• The probability of finding the gas 
molecule with a velocity between 
vx and vx + dvx is equal to

  
P vx( )dvx ∝ e

−
1
2

Mvx
2⎛

⎝⎜
⎞
⎠⎟

/ kT

dvx
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The Boltzmann distribution.

• We can do the same calculation 
for the velocity distribution along 
the y and z axes:

• These equations can be combined 
to determine the dependence of 
the probability on v:

  
P vz( )dvz ∝ e

−
1
2

Mvz
2⎛

⎝⎜
⎞
⎠⎟

/ kT
dvz

  
P vy( )dvy ∝ e

−
1
2

Mvy
2⎛

⎝⎜
⎞
⎠⎟

/ kT
dvy

  
P v( )dv ∝ e

−
1
2

M vx
2 +vy

2 +vz
2( )⎛

⎝⎜
⎞
⎠⎟

/ kT

dvxdvydvz = 4πv2e
−

1
2

Mv2⎛
⎝⎜

⎞
⎠⎟

/ kT

dv
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The Maxwell-Boltzmann speed distribution.

• The probability to find a molecule with a speed between v 
and v + dv is thus proportional to 

• But the probability to find the molecule with a speed 
between 0 and infinity is equal to 1.  Thus:

• The velocity distribution is thus equal to

  
P v( )dv ∝ 4πv2e

−
1
2

Mv2⎛
⎝⎜

⎞
⎠⎟

/ kT
dv

  
1= P v( )dv

0

∞

∫ = 4πC v2e
−

1
2

Mv2⎛
⎝⎜

⎞
⎠⎟

/ kT
dv

0

∞

∫ = C 2πkT
M

⎛
⎝⎜

⎞
⎠⎟

3/ 2

  
P v( ) = 4π M

2πkT
⎛
⎝⎜

⎞
⎠⎟

3/ 2

v2e
−

1
2

Mv2⎛
⎝⎜

⎞
⎠⎟

/ kT
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The Maxwell-Boltzmann speed distribution.

Integral = N

Most probable v

Average v (50% below, 50% above)

Average of v2

Fixed temperature
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The Maxwell-Boltzmann speed distribution.

Increasing T increases
the fraction of molecules
above a certain velocity.

Note: the integral does not
change when T changes!

Note: all velocities 
scale with √T
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The Boltzmann distribution and internal 
energy.

• The root-mean-square velocity associated with one degree of 
freedom (for example, motion in the x direction) is equal to

• The root-mean-square kinetic energy associated with this degree 
of freedom is thus equal to

  

vx ,rms
2 =

vx
2e

−
1
2

Mvx
2⎛

⎝⎜
⎞
⎠⎟

/ kT

dvx
0

∞

∫

e
−

1
2

Mvx
2⎛

⎝⎜
⎞
⎠⎟

/ kT

dvx
0

∞

∫
=

2
M

ω 2e−ω 2 / kT dω
0

∞

∫

e−ω 2 / kT dω
0

∞

∫
=

2
M

1
2

kT =
1
M

kT

  
Kx ,rms =

1
2

Mvx ,rms
2 =

1
2

kT
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The Boltzmann distribution and internal 
energy.

• The root-mean-square kinetic energy associated with the three 
translational degrees of freedom is thus equal to

• It turns out that the average energy associated with each degree 
of freedom, including vibrational and rotational degrees of 
freedom, is (1/2)kT.

• Note:
• The internal energy only depends on the temperature; it does not depend 

on the mass of the gas molecules.
• At a given temperature, the rms velocity of heavier molecules will be 

smaller than the rms velocity of lighter molecules.

  
Krms = Kx ,rms + K y ,rms + Kz ,rms =

3
2

kT
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The Boltzmann distribution and internal 
energy.

• Up to now we have assumed that the 
internal energy U of a gas is equal to 
(3/2)kT.

• This is correct for a monatomic gas, but is 
not correct for diatomic or triatomic 
gases.

• Predictions for a diatomic molecule:
• Linear motion (3 degrees of freedom): 

U = (3/2)kT.
• Rotational motion (2 degrees of freedom): 

U = kT.
• Vibrational motion (2 degrees of freedom): 

U = kT.
• The number of degrees of freedom 

excited depend on the temperature.
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The Boltzmann distribution and internal 
energy.

Remember: Q = C ΔT 
But: K = (1/2)nkT and ΔK = (1/2)nk ΔT 
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Molecular speed and its consequences.
The mean-free path.

• The RMS velocities of individual 
gas molecules are large.  For 
example, for hydrogen at room 
temperature, the RMS velocity is 
1920 m/s.

• Despite the large RMS velocity, the 
average diffusion velocity is much 
smaller and is largely determined by 
the mean-free path of the molecules.

• We expect that the mean-free path is 
inversely proportional to the cross-
sectional area of the molecules and 
inversely proportional to the density.

Typical values of the mean-free
path are between 10-8 and 10-7 m
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Molecular speed and its consequences.
The propagation of sound.

• Typical values for vrms:
• For H at 300 K: vrms = 1,920 m/s.
• For N at 300 K: vrms = 517 m/s.  

• The speed of sound in these two gases is 1,350 m/s for H 
and 350 m/s for N.

• Note: The speed of sound in a gas will always be less than 
vrms since the sound propagates through the gas by 
disturbing the motion of the molecules.  The disturbance is 
passed on from molecule to molecule by means of 
collisions; a sound wave can therefore never travel faster 
than the average speed of the molecules.  Since vrms 
increases with T, we expect vsound to increase with T.
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Molecular speed and its consequences.
The composition of the atmosphere.

• Typical values for vrms:
• For H at 300 K: vrms = 1,920 m/s.
• For N at 300 K: vrms = 517 m/s.  

• A significant fraction of the H molecules in the atmosphere 
have a velocity that exceeds the escape velocity of the earth.  
This is one of the reasons that our atmosphere contains 
virtually no hydrogen and helium.

• Since the escape velocity decreases with decreasing 
planetary mass, the escape velocity of the moon is so low 
that it has no atmosphere (even the heavier gas molecules 
would quickly escape).
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Molecular speed and its consequences.
Evaporation.

• Evaporation: transformation from 
the liquid to the gas phase.

• A microscopic view of evaporation:
• Molecules with high velocity 

moving close to the surface can 
overcome the strong attractive forces 
between the molecules and escape 
from the liquid ( evaporation).

• The average velocity of the 
molecules left behind in the liquid 
will be lowered.

• Since the average velocity is 
proportional to the temperature, the 
temperature of the liquid is lowered 
when evaporation takes place.
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Enough physics for this week!
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