
Frank L. H. Wolfs Department of Physics and Astronomy, University of Rochester, Lecture 22, Page 1

Physics 141.
Lecture 22.

Carry-on
Luggage.
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Physics 141.
Lecture 22.

• Course Information.

• Entropy.

• Quick review of topics discussed during our last lecture.

• Heat capacity.

• The Maxwell-Boltzmann velocity distribution of gas molecules.
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First result from Exam # 3.
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Analysis of experiment # 5.
Updated Timeline.

• ✔11/14: collisions in the May room
• ✔ 11/18: analysis files available.
• https://www.pas.rochester.edu/~tdimino/phy141/lab05/

• 11/25: each student has determined his/her best 
estimate of the velocities before and after the 
collisions (analysis during regular lab periods).

• 11/25: complete discussion and comparison of 
results with colliding partners and submit final 
results (velocities and errors).

• 11/27: results will be compiled, linear momenta 
and kinetic energies will be determined, and 
results will be distributed.

• 12/2: office hours by lab TA/TIs to help with 
analysis and conclusions.

• 12/6: students submit lab report # 5.

https://www.pas.rochester.edu/~tdimino/phy141/lab05/
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Distributing 4 units of energy among three 
degrees of freedom.

• Consider an atom with three 
degrees of freedom; each degree 
of freedom has a vibrational 
character with the same 
characteristic frequency.

• For this system we find:
• 3 ways: 4:0:0 configuration.
• 6 ways: 3:1:0 configuration.
• 3 ways: 2:2:0 configuration.
• 3 ways: 1:1:2 configuration.

• What is the probability to see the 
different configurations?
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Distributing energy.
The fundamental assumption.

• In order to determine the probability to observe a certain 
configuration, we rely on the fundamental assumption of 
statistical mechanics to make this determination:

 A fundamental assumption in statistical mechanics is that in our state 
of microscopic ignorance, each microstate (microscopic distribution 
of energy) corresponding to a given macrostate (total energy) is 
equally probable.

• For example N = 3:
• 15 microstates; probability of each one is 1/15.
• 3 ways: 4:0:0 configuration (20% probability).
• 6 ways: 3:1:0 configuration (40% probability).
• 3 ways: 2:2:0 configuration (20% probability).
• 3 ways: 1:1:2 configuration (20% probability).
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Distributing energy.
Number of states: different representations.

• Since the number of states of a 
system is enormous (even for 
small system with a few hundred 
oscillators) it is often more 
convenient to look at the natural 
logarithm of the number of states.
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Entropy.

• Since the evolution of the system 
depends on the number of 
microstates, the concept of entropy 
is introduced.

• The entropy S of one of the blocks 
we have been discussing is defined 
as

𝑆 = 𝑘 ln Ω = 𝑆! + 𝑆"
 where k is the Boltzmann constant 

(1.4 x 10-24 J/K).
• The entropy of the total system is 

the sum of the entropy of the blocks 
that make up the system.
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Entropy and the Second Law of 
Thermodynamics.

• To achieve thermal equilibrium, the 
system will maximize its entropy.

• The most likely evolution of the 
system is the focus of the second 
law of thermodynamics:

 If a closed system is not in 
equilibrium, the most probable 
consequence is that the entropy of 
the system will increase.

• Note: even when the two blocks are 
in thermal equilibrium, there may 
still be exchange of energy between 
the blocks, but the time averaged 
energy exchange will be zero.
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Entropy and the Second Law of 
Thermodynamics.

• If we know the entropy as function 
of for example the number of 
vibrational quanta of block 1, we 
can express the condition for 
equilibrium as

𝑑𝑆
𝑑𝑞!

=
𝑑𝑆!
𝑑𝑞!

+
𝑑𝑆"
𝑑𝑞!

= 0

 or

𝑑𝑆!
𝑑𝑞!

= −
𝑑𝑆"
𝑑𝑞!
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Entropy and the temperature.

• Since q1 + q2 = constant (assuming 
there is no exchange of energy with 
the environment surrounding the two 
blocks), the condition for equilibrium 
can be rewritten as

𝑑𝑆!
𝑑𝑞!

=
𝑑𝑆"
𝑑𝑞"

• Since thermal equilibrium is achieved 
when the temperature of the blocks 
are the same, the slope of the 
entropy curves must be related to 
the temperature of the blocks.
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Entropy and the temperature.

• The temperature of a system is 
defined as

1
𝑇
=

𝑑𝑆
𝑑𝐸#$%

• The temperature defined in this 
manner is expressed in units of Kelvin 
(K) since the internal energy is 
measured in units of Joules and the 
entropy is measured in units of J/K.

• Using the definition of temperature, 
we conclude that block 1 initially has 
a higher temperature than block 2.
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Entropy and temperature.

• The maximum entropy is reached 
when 

𝑑𝑆!
𝑑𝑞!

=
𝑑𝑆"
𝑑𝑞"

• Assuming that each oscillator has 
the same energy quantization, this 
condition is equivalent to

1
𝑇!
=
1
𝑇"

or
𝑇! = 𝑇"
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The Boltzmann distribution.
• Question:

 What does the fundamental theory 
of statistical mechanics tell us 
about the probability to see a 
single atom with a specific 
energy?

• Answer:
 A lot.

• Consider a single oscillator in 
contact with 300 other oscillators.

• The entropy of this system is 
equal to the entropy of the 300 
oscillators.

• If the energy of the single 
oscillator increases, the number 
of states decreases.

Energy of
300 oscillators Energy of

1 oscillator
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The Boltzmann distribution.
• The entropy curve is close to linear at 

small ∆𝐸  and its slope is equal to 
𝑑𝑆/𝑑𝐸!.

• We can approximate the dependence 
of the entropy on ∆𝐸 in the following 
manner:

𝑆 = 𝐴 −
𝑑𝑆
𝑑𝐸

∆𝐸 = 𝐴 −
∆𝐸
𝑇

• The number of states of the system, as 
function of ∆𝐸 , can now be 
determined:
Ω = 𝑒&'()) = 𝑒+/- = 𝑒./-𝑒/∆1/-2

Energy of
300 oscillators Energy of

1 oscillator
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The Boltzmann distribution.

• Since the probability is 
proportional to the number of 
states, we conclude that:

 the probability of finding a 
microscopic system to be in a 
state with energy ΔE above the 
ground state of the system is 
proportional to 𝑒!∆#/%&.

• This probability distribution is 
called the Boltzmann 
distribution.
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3 Minute 03 Second Intermission. 

• Since paying attention for 1 hour 
and 15 minutes is hard when the 
topic is physics, let’s take a 3 
minute 03 second intermission.

• You can:
• Stretch out.
• Talk to your neighbors.
• Ask me a quick question.
• Enjoy the fantastic music.
• Solve a WeBWorK problem.
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The Boltzmann distribution.

• The energy of a gas molecule can 
have various components: 

• Translational
• Vibrational
• Rotational
• Gravitational

• For each component, the 
probability will show an 
exponential dependence on 
energy.

• I will first focus on the 
translational component.
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The Boltzmann distribution.

• Consider that the gas molecule is 
moving with a velocity vx along 
the x axis.

• The energy of the gas molecule, 
associated with its motion along 
the x axis, will be (1/2)Mvx2.

• The probability of finding the gas 
molecule with a velocity between 
vx and vx + dvx is equal to

𝑃 𝑣3 𝑑𝑣3 ∝ 𝑒/
!
"45!

"

-2 𝑑𝑣3

  
P vx( )dvx ∝ e

−
1
2

Mvx
2⎛

⎝⎜
⎞
⎠⎟

/ kT

dvx
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The Boltzmann distribution.
• We can do the same calculation for 

the y and z velocity distributions :

𝑃 𝑣6 𝑑𝑣6 ∝ 𝑒/
!
"45#

"

-2 𝑑𝑣6

𝑃 𝑣7 𝑑𝑣7 ∝ 𝑒/
!
"45$

"

-2 𝑑𝑣7

• These equations can be combined 
to determine the dependence of the 
probability on v:

𝑃 𝑣 𝑑𝑣 ∝ 𝑒/
!
"45

"

-2 𝑑𝑣3𝑑𝑣6𝑑𝑣7
or

𝑃 𝑣 𝑑𝑣 ∝ 4𝜋𝑣"𝑒/
!
"45

"

-2 𝑑𝑣
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The Maxwell-Boltzmann speed distribution.

• The probability to find a molecule with a speed between v 
and v + dv is thus proportional to 

𝑃 𝑣 𝑑𝑣 ∝ 4𝜋𝑣"𝑒#
$
"%&

!

'( 𝑑𝑣
• But the probability to find the molecule with a speed 

between 0 and infinity is equal to 1.  Thus:

1 = *
)

*

𝑃 𝑣 𝑑𝑣 = 4𝜋𝐶*
)

*

𝑣"𝑒#
$
"%&

!/('() = 𝐶
2𝜋𝑘𝑇
𝑀

"

• The velocity distribution is thus equal to

𝑃 𝑣 = 4𝜋
2𝜋𝑘𝑇
𝑀

"
𝑣"𝑒#

$
"%&

!

'(
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The Maxwell-Boltzmann speed distribution.

Integral = N

Most probable v

Average v (50% below, 50% above)

Average of v2

Fixed temperature
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The Maxwell-Boltzmann speed distribution.

Increasing T increases
the fraction of molecules
above a certain velocity.

Note: the integral does not
change when T changes!

Note: all velocities 
scale with √T
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The Boltzmann distribution and internal 
energy.

• The root-mean-square velocity associated with one degree of 
freedom (for example, motion in the x direction) is equal to

𝑣.,012" =
∫)
*𝑣."𝑒

#$"%&"
!/('()𝑑𝑣.

∫)
* 𝑒#

$
"%&"

!/('()𝑑𝑣.
=
2
𝑀
∫)
*𝜔"𝑒#3!/('()𝑑𝜔

∫)
* 𝑒#3!/('()𝑑𝜔

=
1
𝑀𝑘𝑇

• The root-mean-square kinetic energy associated with this degree of 
freedom is thus equal to

2𝐾.,012 =
1
2𝑀𝑣.,012

" =
1
2𝑘𝑇
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The Boltzmann distribution and internal 
energy.

• The root-mean-square kinetic energy associated with the three 
translational degrees of freedom is thus equal to

2𝐾012 = 2𝐾.,012 + 2𝐾4,012 + 2𝐾5,012 =
3
2𝑘𝑇

• It turns out that the average energy associated with each degree 
of freedom, including vibrational and rotational degrees of 
freedom, is (1/2)kT.

• Note:
• The internal energy only depends on the temperature; it does not depend 

on the mass of the gas molecules.
• At a given temperature, the rms velocity of heavier molecules will be 

smaller than the rms velocity of lighter molecules.
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The Boltzmann distribution and internal 
energy.

• Up to now we have assumed that the 
internal energy U of a gas is equal to 
(3/2)kT.

• This is correct for a monatomic gas, but is 
not correct for diatomic or triatomic 
gases.

• Predictions for a diatomic molecule:
• Linear motion (3 degrees of freedom): 

U = (3/2)kT.
• Rotational motion (2 degrees of freedom): 

U = kT.
• Vibrational motion (2 degrees of freedom): 

U = kT.
• The number of degrees of freedom 

excited depend on the temperature.
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The Boltzmann distribution and internal 
energy.

Remember: 𝑄 = 𝐶∆𝑇
But: 𝐾 = $

"
𝑛𝑘𝑇 and ∆𝐾 = $

"
𝑛𝑘∆𝑇 = 𝐶∆𝑇
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Molecular speed and its consequences.
The mean-free path.

• The RMS velocities of individual 
gas molecules are large.  For 
example, for hydrogen at room 
temperature, the RMS velocity is 
1920 m/s.

• Despite the large RMS velocity, the 
average diffusion velocity is much 
smaller and is largely determined by 
the mean-free path of the molecules.

• We expect that the mean-free path is 
inversely proportional to the cross-
sectional area of the molecules and 
inversely proportional to the density.

Typical values of the mean-free
path are between 10-8 and 10-7 m
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http://www.physics.emory.edu/~weeks/squishy/BrownianMotionLab.html

0.5 µm particles in water, 50/50 glycerol-water, 75/25 glycerol-water, glycerol 

Probing molecular speeds in liquids.
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Molecular speed and its consequences.
The propagation of sound.

• Typical values for vrms:

• For H at 300 K: vrms = 1,920 m/s.
• For N at 300 K: vrms = 517 m/s.  

• The speed of sound in these two gases is 1,350 m/s for H 
and 350 m/s for N.

• Note: The speed of sound in a gas will always be less than 
vrms since the sound propagates through the gas by 
disturbing the motion of the molecules.  The disturbance is 
passed on from molecule to molecule by means of 
collisions; a sound wave can therefore never travel faster 
than the average speed of the molecules.  Since vrms 
increases with T, we expect vsound to increase with T.
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Molecular speed and its consequences.
The composition of the atmosphere.

• Typical values for vrms:

• For H at 300 K: vrms = 1,920 m/s.
• For N at 300 K: vrms = 517 m/s.  

• A significant fraction of the H molecules in the atmosphere 
have a velocity that exceeds the escape velocity of the earth.  
This is one of the reasons that our atmosphere contains 
virtually no hydrogen and helium.

• Since the escape velocity decreases with decreasing 
planetary mass, the escape velocity of the moon is so low 
that it has no atmosphere (even the heavier gas molecules 
would quickly escape).
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Molecular speed and its consequences.
Evaporation.

• Evaporation: transformation from 
the liquid to the gas phase.

• A microscopic view of evaporation:
• Molecules with high velocity 

moving close to the surface can 
overcome the strong attractive forces 
between the molecules and escape 
from the liquid ( evaporation).

• The average velocity of the 
molecules left behind in the liquid 
will be lowered.

• Since the average velocity is 
proportional to the temperature, the 
temperature of the liquid is lowered 
when evaporation takes place.
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Next week: Chapter 13.
Aka Supplement S1.

Chabay Supplement1.tex 10/11/2014 9: 11 Page S1-1

SUPPLEMENT

S1
R + r

d

Gases and Heat
Engines

OBJECTIVES

After studying this supplement, you should be able to

Determine the flow rate of a gas through a hole, given microscopic
information about the gas
Determine the change in temperature and pressure of a gas undergoing
compression or expansion
Determine the efficiency of a heat engine

S1.1 GASES, SOLIDS, AND LIQUIDS
In contrast to a solid, a gas has no fixed structure. The gas molecules are
not bound to each other but move around very freely, which is why a gas
does not have a well-defined shape of its own; it fills whatever container you
put it in (Figure S1.1). Think, for example, of the constantly shifting shape of a
cloud, or the deformability of a balloon, in contrast with the rigidity of a block
of aluminum. On average, gas molecules are sufficiently far apart that most of
the time they hardly interact with each other. This low level of interaction is
what makes it feasible to model a gas in some detail, using relatively simple
concepts.

Figure S1.1 Molecules in a gas. In a gas the molecular motion must be sufficiently violent that molecules
can’t stay stuck together. At high enough temperatures, any molecules that
do manage to bind to each other temporarily soon get knocked apart again
by high-speed collisions with other molecules. However, at a low enough
temperature, molecules move sufficiently slowly that collisions are no longer
violent enough to break intermolecular bonds. Rather, more and more
molecules stick to each other in a growing mass as the gas turns into a liquid
or, at still lower temperatures, a solid.

Liquids Are More Complex

Figure S1.2 Molecules in a liquid.

A liquid is intermediate between a solid and a gas. The molecules in a liquid
are sufficiently attracted to each other that the liquid doesn’t fly apart like a
gas (Figure S1.2), yet the attraction is not strong enough to keep each molecule
near a fixed equilibrium position as in a solid. The molecules in a liquid can
slide past each other, giving liquids their special property of fluid flow (unlike
solids) with fixed volume (unlike gases).

The analysis of liquids in terms of atomic, microscopic models is quite
difficult compared with gases, where the molecules only rarely come in
contact with other atoms, or compared with solids, where the atoms never
move very far away from their equilibrium positions. For this reason, in

S1-1
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S1-2 Supplement S1 Gases and Heat Engines

this introductory textbook with its emphasis on atomic-level description and
analysis we concentrate mostly on understanding gases and solids.

An active field of research, called “molecular dynamics,” models liquids,
gases, and solids by computational modeling using the Momentum Principle
and appropriate forces between the molecules. The difference between this
work and the computational models you have made is that sophisticated
programming techniques are required to deal with very large numbers of
molecules, sometimes as many as a million, in a reasonable amount
of computer time.

S1.2 GAS LEAKS THROUGHA HOLE
In Chapter 12 we used statistical mechanics to determine the average speed
of a gas molecule. Here we’ll see some interesting phenomena in which the
average speed plays a role. We will model the gas molecules as little balls that
don’t attract each other and interact only in brief elastic collisions.

We will frequently use the symbol n=N/V to stand for the number of gas
molecules per unit volume, which we will express in SI units as number per
cubic meter:

NUMBER DENSITY: NUMBER PER CUBIC METER

Definition: n≡ N
V

N is the number of gas molecules in the volume V. The units of n are
molecules per cubic meter.

Warning: You may be familiar from chemistry with the ideal gas law written in
the form PV= nRT, where n is the number of moles. Here nmeans something
else—the number of molecules per cubic meter, N/V.

EXAMPLE n at Standard Temperature and Pressure

Standard Temperature and Pressure (or STP) is defined for a gas to be
0 ◦C = 273 K and the average air pressure at sea level. Under STP
conditions the ideal gas law can be used to show that one mole of a gas will
occupy a volume of 22.4 liters = 22.4× 103 cm3 = 22.4× 10−3 m3. What is
the number density n of a gas at STP?

Solution One mole consists of 6.02×1023 molecules, so

n=
6.02×1023 molecules

22.4×10−3 m3

= 2.68×1025 molecules/m3

v

Figure S1.3 Side view of molecules all
traveling to the right with speed v inside a
tube. There are nmolecules per cubic
meter inside the tube. One-Directional Gas

We will calculate the leakage rate of a gas through a small hole in a container
filled with the gas. First we’ll consider a simplified one-directional example,
in order to understand the basic issues before stating the results for a real
three-dimensional gas.

Cross-sectional

area A

Figure S1.4 End view of molecules all
traveling the same direction in a tube of
cross-sectional area A.

The chain of reasoning that we follow is basically geometric. Consider a
situation in which many gas molecules are all traveling to the right inside a
tube. For the moment, temporarily assume that they all have the same speed v
(Figure S1.3). The cross-sectional area of the tube is A (Figure S1.4).
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Enough physics for this week!


