Physics 141.
Lecture 21.

Carry-on
Luggage.
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Physics 141.
Lecture 21.

* Course information.
» Experiment 5: updates.
* Quiz

» Start of our discussion of Chapter 12: Entropy.
« Reversible and irreversible processes.
« Statistical models.

* Entropy.
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Physics 141.
Course information.

* No homework due this week.
e Office hours for lab # 5 on Monday December 4.

 Lab report # 5 1s due on Wednesday December 6. Requests
for extensions will not be honored.

* Homework # 10 1s due on Friday 12/8 at 12 pm.

 Homework # 11 1s optional and 1s due on Friday 12/15 at 12
pm.

* There will be no office hours and recitations this week.
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Analysis of experiment # 3.
Updated Timeline.

« V' 11/14: collisions in the May room

- vV 11)20: analysis files available.
* https://www.pas.rochester.edu/~tdimino/phy141/1ab05/

« vV 11/20: each student has determined his/her
best estimate of the velocities before and after the
collisions (analysis during regular lab periods).

-V 11/21: complete discussion and comparison of

results with colliding partners and submit final
results (velocities and errors).

« vV 11/25: results will be compiled, linear
momenta and kinetic energies will be determined,
and results will be distributed.

* 12/4: office hours by lab TA/TIs to help with
analysis and conclusions.

 12/6: students submit lab report # 5.
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Data are available online:

L] L] 4
ttps:// www Yy
DS pas.rocncsicr.cau/~tdimino/p d
° ° ° ° p &

Col Ver L Ver R cL1 cL2 | cL3 cL4 | CR1 | CR2 | CR3 | CR4 PLi dPLi PR dPRi PLf dPLf PRf dPRf KLi dKLi KRi dKRi KLF dKLf KRf dKRF

Ref. Length 10.7 10.6 10.5 10.6 10.3 10.3 10.2 103
1
2 Sam Laitman Japneet Singh 104 10.2 7 6.1 102 10 74 69 2.6 5.6 |-241.0 | 124 |-102.0| 7.0 |-153.4 | 9.0 0.0 0.2 | 240.8 | 27.7 | 62.9 10.3 | 97.6 12.8
3 \Victoria Wang Srujamya Sampathi| 10.7 10.6 79 34 10.3 10.3 10.2 8.6 -0.4 2.4 -125.1 2.9 -69.3 5.1 -49.7 4.1 0.0 0.0 129.8 7.6 33.5 6.0 20.5 4.3
4 Jayden Roberts Samuel Irvine 10.6 95 10.6 919, 10.1 59 59 52
5 /Ainhoa Gil Uriarte |Brianna Gori 10.4 10.4 10.5 103 10.2 71 i7E5 73 -0.9 3.1 | -1486 | 5.1 -83.9 4.3 -73.7 5.0 0.0 0.0 142.2 | 11.8 | 47.4 5.9 35.0 5.7
6 Marina Tiligadas _|Ethan Raupers 9.7 9.8 9.7 10.5 9.8 99 9.9 102 0.3 5.1 |-208.1 | 10.0 | -84.2 | 10.2 | -136.2 | 7.7 0.0 0.0 195.6 | 21.2 | 41.5 11.9 | 83.7 10.8
7 Roshan Mehta Ken Liao 10 10.3 102 10.6 10 10.1 99 102 0.3 4.4 | -158.3 | 4.5 -76.6 1.8 -74.3 1.7 0.0 0.0 152.9 | 10.3 | 39.5 2.3 33.7 1.9
8 Ollie Walters Radnaa Munkh-Orgjl 6.9 6.3 10.1 10.2 42 5] 14 84 -0.4 1.3 -211.1 4.4 -108.0 5.3 -93.7 4.8 0.0 0.0 234.1 11.3 58.1 6.5 46.1 5.5
9 Hifsa Qayyoom  |Mya Cacciotti 10 10.2 104 9.8 99 10 99 9.8 0.0 01 |-173.9| 5.7 -73.9 3.7 -86.9 4.0 0.0 0.0 | 208.7 | 16.6 | 49.2 6.3 52.2 5.8
10 [Trevor Shooshan  |Finley Gloor 10.2 9.8 99 9.8 9.6 9.7 9.8 10 -1.6 0.4 -154.0 7.7 -122.7 7.2 -87.9 6.9 0.0 0.0 131.7 15.3 92.7 13.0 42.9 7.9
11 Sunny (Jiwon) Woo|Ashton Tokarski 59 6 7 104 8.9 10.3 10.2 10.2
12 Japneet Singh 'Sam Laitman 49 62 55 85 54 74 32 8.1
13 |Srujamya S hi [Victoria Wang 104 104 105 89 103 56 59/ 64 -0.2 1.6 | -162.4 | 3.8 -76.8 3.1 -80.4 4.1 0.0 0.0 184.3 | 10.4 | 48.9 5.0 45.1 5.6
14 Samuel Irvine Jayden Roberts 9.5 10.1 9 10 10.3 9.8 9.7 10.1
15 Brianna Gori /Ainhoa Gil Uriarte | 10.6 89 9 93 10.2 9 94 9.6 -1.7 4.2 | -150.2 | 5.3 -79.2 5.6 -71.4 4.4 0.0 0.1 152.0 | 13.1 | 40.4 6.8 34.3 5.1
16 Ethan Raupers Marina Tiligadas 9.8 10.3 92 9.8 9.8 10 9.5 9.7 -0.2 7.7 | -186.8 | 9.4 |-105.2 | 10.0 | -78.5 9.4 0.0 0.0 | 204.5 | 24.2 | 50.0 10.7 | 36.1 10.2
17 Ken Liao Roshan Mehta 85 6.7 8.7 10.5 6.5 84 9.7 85 0.5 29 |-1920| 3.6 |-101.2| 2.4 -80.5 2.4 0.0 0.0 | 248.2 | 11.4 | 62.5 3.5 43.6 3.1
18 Radnaa Munkh-OrgjOllie Walters 6.6 6.1 6.1 59 10.1 99 10 102 -0.5 0.8 |-227.8| 12,8 |-1123 | 3.6 |-1104| 5.8 0.0 0.0 | 258.5 | 33.5 | 66.3 4.9 60.7 7.3
19 Mya Cacciotti Hifsa Qayyoom 10.6 8.1 8.3 104 9.3 9.7 103 82 0.0 0.1 -131.2 4.6 -70.5 4.9 -45.2 3.2 0.0 0.0 154.8 14.0 34.3 5.8 18.4 3.4
20 Finley Gloor [Trevor Shooshan 105 8 59 84 94 8.5 10.1 57 -2.4 0.5 |-147.0| 0.8 |-139.3 | 2.1 -79.8 0.9 0.0 0.0 132.9 1.8 107.8 3.9 39.2 1.0
21 /Ashton Tokarski  |Sunny (Jiwon) Woo 10.6 3.8 39 76 10.2 6.7 10.1 10

Ref. Length 10.3 104 10.2 103 102 10.3 10.3 103
22 [Chenfei Tang Rodrick Jin 10.3 10.4 39/ 5 10.2 10.3 53 32 0.3 6.9 | -166.4 | 8.1 -98.7 6.7 -64.4 4.5 0.0 0.0 155.7 | 17.8 | 44.1 6.8 23.3 3.8
23 James McKeown |Carlo Lichtenberger| 10.3 9.9 9.8 9.7 9.6 10.3 9.5 103 -0.7 22 | -1749 | 3.4 -90.4 4.0 -84.7 5.3 0.0 0.0 189.3 | 7.9 55.1 5.9 44.4 6.7
24 Evan Schmidt AArjun Kanani 10.3 10.2 10 10.1 99 99 9.9 9.9 -1.0 5.5 |-2283 | 10.3 |-1200| 6.4 -99.7 5.1 0.0 0.1 253.4 | 26.1 79.2 9.8 48.4 5.7
25  [Carson Nagpaul Gabriel Lora 99 9.6 10 102 9.7 99 9.8 9.8 -4.7 34 |-2334| 84 |-1105]| 5.0 |-125.0| 5.5 0.1 0.2 | 253.9 | 20.7 | 72.4 7.7 72.8 7:2
26 Jack Rochkind Eyup Togay 6.1 104 289 5 102 85 92 103 0.3 40 |-2463| 82 |[-1036| 9.5 |-135.2 | 13.1 0.0 0.0 313.6 | 24.2 68.1 14.9 94.4 21.1
27 Joshua Khan Maria Vardanyan 103 44 i) 7.1 102 103 10.3 9 -0.2 1.0 |-223.8| 11.0 | -87.4 53 [-117.2 | 9.6 0.0 0.0 279.0 | 32.2 60.2 9.1 76.6 14.7
28 Finn Saarie Ty Wiggenhorn 9.5 9.1 10.1 48 9.7 9.8 99 9.8 -0.1 1.1 | -273.4| 2.0 -96.2 1.0 [-141.9| 1.7 0.0 0.0 | 321.2 | 5.3 69.3 1.7 86.6 2.3
29  |Ann Wang Kevin Yu 104 10 438 45 102 9.7 79 7.1 -0.1 0.2 |-199.1 | 4.7 |-109.6 | 5.1 -87.5 5.1 0.0 0.0 | 240.0 | 13.5 | 65.9 7.2 46.3 6.4
30  |Ava Stern \Abagael Speights 10.3 5.1 s 71l 10.2 9.8 9.8 7 -0.4 0.6 |-216.2| 5.2 |-102.2 | 3.1 |-108.5| 5.2 0.0 0.0 | 257.8 | 14.5 | 73.6 5.5 64.9 7.3
31 /Anagha Ramnath |Jacob Cohen 10.2 9.5 9.6 43 10 99 10.1 9.5 0.1 0.8 |-260.1| 2.1 |-102.7 | 0.8 |-126.7 | 1.8 0.0 0.0 | 3119 | 5.7 75.6 1.5 74.0 2.4
32 [Rodrick Jin (Chenfei Tan, 10.3 59 3 255 10.2 755 6.7 29 -0.6 6.1 |-244.0 | 155 |-121.1 | 7.8 |-121.1| 9.3 0.0 0.0 | 269.6 | 38.7 | 82.4 12.5 | 66.4 | 11.5
33 [Carlo LichtenbergerJames McKeown 104 3.6 10.1 32 102 10.1 8 10 0.1 3.0 [-1945] 3.0 -99.4 3.5 -85.8 5.1 0.0 0.0 | 2546 | 9.7 61.2 5.1 49.6 7.2
34 |Arjun Kanani Evan Schmidt 17/ 25 34 103 25 24 85 103 -0.8 09 |-247.2 | 7.3 |-147.0| 5.1 |-1045| 7.3 0.0 0.0 | 3363 | 23.1 | 1051 | 8.4 60.1 9.7
35 Gabriel Lora Carson Nagpaul 103 102 34 35 102 103 10.1 35 -0.4 2.1 -219.8 | 4.7 |-131.5| 4.9 -88.2 5.1 0.0 0.0 286.3 | 14.5 80.5 6.9 46.1 6.4
36 [Eyup Togay Jack Rochkind 10 99 10 4.8 10.1 95 99 9.6 0.2 28 |-1866 | 9.2 |-1113| 9.7 -77.0 8.7 0.0 0.0 | 221.0 | 26.1 64.0 12.8 | 37.7 10.1
37  [Maria Vard Joshua Khan 9.8 9.6 47 4.6 10.1 103 10.2 103 -1.5 1.8 | -169.9 | 5.1 -89.1 | 10.3 | -60.8 5.1 0.0 0.0 | 227.4 | 17.1 | 44.3 12.0 | 29.1 6.2
38 [Ty Wiggenhorn Finn Saarie 36 26 438 44 65 10.1 10.2 103 -0.7 1.7 | -174.4 | 1.0 -95.5 1.8 -41.9 1.0 0.0 0.0 | 2276 | 3.3 39.2 1.6 13.1 0.8
39 Kevin Yu /Ann Wang 10.1 73 6.8 6.7 10.1 10.2 9.8 74 0.0 0.8 |-210.8 | 2.3 |-107.9 | 3.3 |-105.6 | 5.0 0.0 0.0 | 2438 | 6.3 70.6 5.1 61.2 6.7
40 |Abagael Speights |Ava Stern 10.3 7.6 74 25 10.3 47 515 25, -0.3 0.5 |-184.1 | 4.6 |-103.4 | 4.1 -80.2 3.9 0.0 0.0 | 239.1 | 14.7 | 59.0 5.5 45.4 5.4
41 Jacob Cohen /Anagha Ramnath 28] 45 10.5 104 6 10.1 10 10.3 0.2 34 |-158.4 | 1.3 |-105.0 | 4.3 -46.6 2.0 0.0 0.0 179.9 | 3.7 50.8 4.8 15.6 1.7

L] L]
L}
Note: you will need to use all the data to look for correlations

between loss of kinetic energy and deformation.
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Quiz lecture 21.
PollEv.com/frankwolfs050

* The quiz today will have
four questions. All answers
are correct.

* [ will collect your answers
electronically using the Poll
Everywhere system.

* You have 30 seconds to
answer each question.

Frank L. H. Wolfs

Live activities for = 2
teammates, students, ‘ .
and friends
S |
-~
L]

A

Get started
= -

Ask interactive questions that get participants
talking
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Reversible and 1rreversible processes.

« Many processes In physics are
reversible.

* Consider the example of a two-

dimensional collisions:

* You will not be able to tell the
difference between the movie
being played forward and the
movie being played in reverse.

* In both directions, the collision
looks possible.

« This process 1s completely
reversible.
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Reversible and 1rreversible processes.

e Irreversible processes are
processes that are highly unlikely
to occur 1n nature.

*In most cases there 1S no
fundamental physics principle
that make the reverse process
impossible.

« But if the chance that the reverse
process happens is essentially 0,
the process 1s called irreversible.

High
temperature Low
temperature

High
temperature Low
temperature
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Reversible and 1rreversible processes.

* In order to determine whether a process 1s reversible or
irreversible, we must rely on statistical arguments to
determine the likelihood that a certain process occurs.

* In Chapter 12 we will use statistical theories to determine
the energy distributions among objects, to determine the
velocity distributions of gas atoms, etc.

» This area of physics 1s called statistical mechanics.
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Distributing energy.
N=1.

* Consider an atom, constraint in

such a way that it only has one WV‘MM‘

degree of freedom. E4 = 4hiwg + Eg

« We will also assume that it only E3 =3hwo + Ey

A
One quantum

can carry out vibrational motion. of energy
/

A

Energy

E>r =2hwo + Ey
 If the atom absorbs 4 quanta of \ /
vibrational energy, we know
without any doubt it will undergo Ground
a transition from its ground state state
to its fourth excited state, £,.

E1=1hwy + Ey
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Distributing energy.
N = 2.

* Now consider the situation where

the atom has two degrees of Config. Degree 1 | Degree 2
freedom; each degree of freedom
has a vibrational character with the 1 4 0

same characteristic frequency.

e Consider what happens when this

system absorbs 4 quanta of 2 3 :
vibrational energy.

- We see that there are 2 3 2 2
configurations in which there 1s a
4:0 energy distribution, 2 4 1 3
configurations in which there 1s a
3:1 energy distribution, and 1 5 0 4

configuration in which there is a 2:2

energy distribution.
Frank L. H. Wolfs Department of Physics and Astronomy, University of Rochester, Lecture 21, Page 11




Distributing energy.
N =3.

. . . ‘f / s (5% \ 7
* Now consider the situation where \Ja W o Y'Y e
the atom has three degrees of ¢ ¢ 0 0 4 0 0 0 4
freedom; each degree of freedom

has a vibrational character with |/ 99 999 BY =/
- U e Ywe e

the same characteristic frequency. 5 0 3 0 1 1 3 o0
\ A /1 f { ’“ f = { \ "ll f ‘I' = |

. 5 Y 999 999

* For this system we find: v UV Y VY VYU
* 3 ways: 4:0:0 configuration. 0 3 1 L 8 0 1 3

* 6 ways: 3:1:0 configuration. |

. \ I /Y f \ [ 'n \ " \ A u'l

* 3 ways: 2:2:0 configuration. o= \.\. " = A .' " ; g \ o/

* 3 ways: 1:1:2 configuration. O Y g f \J U o U

2 2 0 2 2 0 2
* What is the probability to see the | ’; = ;-,\ = ;‘\ 1—
. . 'll { ' f 'l ‘ Ve |I ! | . 'f
different configurations? o/ I \/ o \f o \/ (VAW

E 12 1 0 2 2 1 2
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Distributing energy.
The fundamental assumption.

* In order to determine the probability to observe a certain

configuration, we rely on the fundamental assumption of
statistical mechanics to make this determination:

A fundamental assumption in statistical mechanics is that in our state
of microscopic ignorance, each microstate (microscopic distribution

of energy) corresponding to a given macrostate (total energy) is
equally probable.

 For example N = 3:
* 15 microstates; probability of each one 1s 1/15.
3 ways: 4:0:0 configuration (20% probability).
* 6 ways: 3:1:0 configuration (40% probability).
* 3 ways: 2:2:0 configuration (20% probability).
* 3 ways: 1:1:2 configuration (20% probability).
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Distributing energy.
Two N = 3 atoms.

e Consider now a system with two Atom 1 Atom 2 # states

atoms, each with three degrees of

freedom.

* The number of states forn=1, 2, n=4 n=0 15x1
3, and 4 quanta in a given atom
are easily determined: n=73 n=1 10 x 3

n=1:100,010, 001

- n = 2: 200, 110, 101, 020, 011,
002 n=2 n=2 6x6

- n = 3: 300, 210, 201, 120, 111,
102, 030, 021, 012, 003

e n = 4: 400, 310, 301, 220, 211, n=1 n=3 3% 10
202, 130, 121, 112, 103, 040, 031,
022,013, 004

e The most likely microstate 1s thus n=>0 n=4 1x15

the 2:2 state.
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3 Minute 46 Second Intermission.

* Since paying attention for 1 hour
and 15 minutes 1s hard when the
topic 1s physics, let’s take a 3
minute 46 second intermission.

* You can:
* Stretch out.
 Talk to your neighbors.
« Ask me a quick question.

* Enjoy the fantastic music.
* Solve a WeBWorK problem.
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Distributing energy.
Arranging quanta.

* Extending our study to more complex systems (with more
degrees of freedom) 1s not too difficult.

e If we want to distribute ¢ quanta amount N one-dimensional
oscillators we find that the number of possible ways 1s equal
to

g+ N-1)
"= g|(N -1)!

*Note: g! =gx(g-1)x(g-2)x(g-3)x....x2x1.
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Distributing energy.
Arranging quanta.

« We can verify the previous 9 N #
equations by considering the case
s y s 21/(01 21) =
where we have up to 4 quanta to 0 3 |
be arranged among 3 one-
dimensional oscillators. | 3 (1121 =
3
e Note: 0! = 1. _
41/(21 21 =
e Why? 2 3 ( 6 )
en! =n x (n-1)! If 0! was 0, 1!
would be 0, etc. etc. . . 51/(31 21y =
 The previous equation predicts 10
the correct number of states for 4 3 6!/(4! 2 =
this system. 15
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Distributing energy.
Number of microstates.

Width is proportional

« The number of possible microstates % EE:E: to 1/g or 1IN
quickly becomes very larger when we 5 sgi144
increase the number of oscillators. é 4E+114+

e Consider two blocks, brought in ‘E ;Eiﬁj
contact. One block has 300 TE 1E+114+

. 0 i I
oscillators (100 atoms) and the second 0 20 40 60 80 100

block has 200 oscillators (67 atoms). N

3E+1170+
« When we distribute 100 quanta of 2
vibrational energy among the blocks, E | ], Ve
we find that the maximum number of e Bl L height
stats occurs when 60 quanta are given =
to the first block and 40 to the second N 30 200 600 B0 G0
block. o
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Distributing energy.
Achieving equilibrium.

» Consider bringing the two blocks in

contact when the first block has 90 300
oscillators

quanta of vibrational energy and the
second block only 10.
» The process of exchange of energy is

200
oscillators

Initial state

a random (statistical) process, the
direction of transfer will be in the

direction in which the number of @
possible states increases. 300
- The exchange of energy will continue _oscillators 200

even when the most probable oscillators

distribution 1s reached, but at that Final state
point there will only be small
fluctuation around the most probable

distribution.
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Distributing energy.
Number of states: different representations.

300
oscillators

e Since the number of states of a
200

oscillators

system 1s enormous (even for
small system with a few hundred
oscillators) 1t 1s often more
convenient to look at the natural

. 300 ' In (ngz) 1
logarithm of the number of states. RSy : il

S 7E+144 200 | T

% 6E+114+ / 150+ : In(Qq) |

S 5SE+114+ '

= 100 + . In(Q,) +

S 4E+114— : n(2,)

S 3E+114- 0T | T

S 2E+1141 0 | ! | | 1

S 1E+114- 0 20 40 60 80—>100

o 0 I I I I I | q>

> 100=<80 60 40 20

0 20 40 60 80 100
q1
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Entropy.

* Since the evolution of the system
depends on the number of
microstates, the concept of entropy

1s introduced. 28 2B,
3OOkB dql ' S = Sl + Sz
* The entropy § of one of the blocks 25045+ |
we have been discussing is defined 200k, s,
as 150k 5+ dgi =" 51
100k 5+ IS 5,
S =k InQ) S0kt ~dgy
. Ok | : | | | q
where k 1s the Boltzmann constant O 20 40 60 80 100
I I I I I p)
(1.4 x 10->* J/K). 100 80 60 40 20 0

* The entropy of the total system 1s
the sum of the entropy of the blocks

that make up the system.
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Entropy.

» The most probable configuration of
the system of the two blocks is the

configuration for which the entropy 300kp— dq, 0. S=S,+85,
has a maximum. 250k T |
« When we bring two blocks of 200kz+ sy
different temperature in contact, 150kg-+ 4qy 31
energy exchange will take place 100kg+ dSz; S,
until the system has achieved 50k, <_E
thermal equilibrium. Ok g | | | | | qq

* Thermal equilibrium 1s defined as U 20 40 g B 10

the energy distribution which 100 8 60 40 20
maximizes the entropy of the
system (in this case the two blocks).
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Entropy and the Second Law of
Thermodynamics.

* To achieve thermal equilibrium, the
system will maximize its entropy.

* The most likely evolution of the 300kg— d_q1:0 : S=S;+5,
system 1s the focus of the second 250kp— |
law of thermodynamics: 200k 5+ sy
If a closed system is not in 150k 5+ dqq : 51
equilibrium, the most probable !
consequence is that the entropy of 100kgT 4_@: S2
the system will increase. S50kgT dq, |
e Note: even when the two blocks are Ok 5 : | | | | gy

in thermal equilibrium, there may ? 2=0 4=O 6=0 8=0 1?0 0
0

still be exchange of energy between 100 8 60 40 20
the blocks, but the time averaged

energy exchange will be zero.
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Entropy and the Second Law of
Thermodynamics.

 If we know the entropy as function
of for example the number of

vibrational quanta of block 1, we 300x,1 5_;:0 : B 010
can express the condition for 50,4 : —
equilibrium as 200k 5 ds; §
150k 5+ 0 A7 5
o R .-
1 1 1 50k g+ quE
Okp ——F——F——+— ¢
or (.) 2|0 4.0 6.0 810 1(.)0
s s 100 80 60 40 20 0
a’q1 B a’q1
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Enough physics for today!

KLM 641
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