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Physics 141.
Lecture 19.
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Physics 141.
Lecture 19.

• Course Information.

• Quiz.

• Topics to be discussed today:
• Angular momentum.

• Conservation of angular momentum at the macroscopic and the 
microscopic level.

• Precession.
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Course Information

• Homework set # 8 is due on Friday November 8.

• The collisions of Lab # 5 will take place on Monday 11/11 
in Spurrier Gym.
• If you did not pickup your 12-pack, please pick up one today.
• Make sure you empty your cans between now and 11/11 and bring 

your 12 empty cans to Spurrier Gym. 

• Exam # 3 will take place on Tuesday 11/19 between 8 am 
and 9.20 am. 

• Exam # 3 will cover the material of Chapters 8, 9, 10, and 
11. 
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Quiz lecture 19.
PollEv.com/frankwolfs050

• The quiz today will have 
four questions. 

• I will collect your answers 
electronically using the Poll 
Everywhere system.

• You have 60 seconds to 
answer each question.
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Angular momentum.
Definition.

• The angular momentum is 
defined as the vector product 
between the position vector and 
the linear momentum.

• Note:
• Compare this definition with the 

definition of the torque.
• Angular momentum is a vector.
• The unit of angular momentum is 

kg m2/s.
• The angular momentum depends 

on both the magnitude and the 
direction of the position and linear 
momentum vectors.

• Under certain circumstances the 
angular momentum of a system is 
conserved!
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Conservation of angular momentum.

• Consider the change in the angular momentum of a particle:

𝑑𝐿
𝑑𝑡 =

𝑑
𝑑𝑡 �⃗�×�⃗� =𝑚 𝑟×

𝑑�⃗�
𝑑𝑡 +

𝑑�⃗�
𝑑𝑡 ×�⃗� =𝑚 �⃗�×�⃗� + �⃗�×�⃗� =

= 𝑟×𝑚�⃗� = 𝑟×-�⃗� =-𝜏

• When the net torque is equal to 0 Nm:

-𝜏 = 0 =
𝑑𝐿
𝑑𝑡 ⟹𝐿 = constant

• When we take the sum of all torques, the torques due to the 
internal forces cancel and the sum is equal to torque due to 
all external forces.
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Conservation of angular momentum.
Planetary motion.

• Consider planetary motion:

𝐿 = 𝑟×𝑝 = 𝑚𝑟𝑣sin 𝜃 �̂� =

= 𝑚
𝑟𝑣𝑑𝑡sin 𝜃

𝑑𝑡
�̂� = 2𝑚

𝑑𝐴
𝑑𝑡

�̂�

• The gravitational force is an 
internal force.  In the absence of 
external forces, the angular 
momentum is conserved.  We 
conclude that

34
35=constant

• This is of course Kepler's Law.
  
dA
dt

= constant
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Conservation of angular momentum.

• The connection between the angular 
momentum 𝐿 and the torque 𝜏

7 𝜏 =
𝑑𝐿
𝑑𝑡

 is only true if 𝐿 and 𝜏 are calculated 
with respect to the same reference 
point (which is at rest in an inertial 
reference frame).

• The relation is also true if 𝐿 and 𝜏 
are calculated with respect to the 
center of mass of the object (note: 
the center of mass can accelerate).
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Conservation of angular momentum.
A demonstration.

• Ignoring the mass of the bicycle 
wheel, the external torque will be 
close to zero if we use the center 
of the disk as our reference point.

• Since the external torque is zero, 
angular momentum thus should 
be conserved.

• I can change the orientation of 
the wheel by applying internal 
forces.  In which direction will I 
need to spin to conserve angular 
momentum?
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Angular momentum of rotating rigid objects.

Note the direction of 𝒍𝒊 !!!!
(perpendicular to 𝒓𝒊 and 𝒑𝒊)

• Consider a rigid object rotating around 
the z axis.

• The magnitude of the angular 
momentum of a part of a small section 
of the object is equal to

𝑙! = 𝑟!𝑝! :𝑙!

• Due to the symmetry of the object, we 
expect that the angular momentum of 
the object will be directed on the z 
axis.  Thus, we only need to consider 
the z component of this angular 
momentum.
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Angular momentum of rotating rigid objects.

• The z component of the angular 
momentum is

𝑙! ,# = 𝑟!𝑝! cos 𝜃 = 𝑅!𝑝!
= 𝑚!𝑅!𝑣!

• The total angular momentum of 
the rotating object is the sum of 
the angular momenta of the 
individual components:

𝐿# = 7
!

𝑙! ,# = 7
!

𝑚!𝑅!
$𝜔 = 𝐼𝜔

• The total angular momentum is 
thus equal to

𝐿 = 𝐼𝜔�̂�
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Conservation of angular momentum.
Sample problem.

• A cockroach with mass m runs 
counterclockwise around the rim of a 
lazy Susan (a circular dish mounted 
on a vertical axle) of radius R and 
rotational inertia I with frictionless 
bearings.  The cockroach’s speed 
(with respect to the earth) is v, 
whereas the lazy Susan turns 
clockwise with angular speed 𝜔% .  
The cockroach finds a bread crumb on 
the rim and, of course, stops.  (a) 
What is the angular speed of the lazy 
Susan after the cockroach stops?  (b) 
Is mechanical energy conserved ?

ω

v

R

x-axis

y-axis
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Conservation of angular momentum.
Sample problem.

• The initial angular momentum of 
the cockroach is

𝐿& = 𝑟&×𝑝& = 𝑅𝑚𝑣�̂�

• The initial angular momentum of 
the lazy Susan is

𝐿' = −𝐼𝜔% �̂�

• The total initial angular 
momentum is thus equal to

𝐿 = 𝐿& + 𝐿' = (𝑅𝑚𝑣 − 𝐼𝜔%)�̂�

ω

v

R

x-axis

y-axis
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Conservation of angular momentum.
Sample problem.

• When the cockroach stops, it will 
move in the same way as the rim 
of the lazy Susan.  The forces that 
bring the cockroach to a halt are 
internal forces, and angular 
momentum is thus conserved.

• The moment of inertia of the lazy 
Susan + cockroach is equal to

𝐼( = 𝐼 + 𝑚𝑅$

• The final angular velocity of the 
system is thus equal to

𝜔 =
𝐿(
𝐼(
=
𝑅𝑚𝑣 − 𝐼𝜔%

𝐼 + 𝑚𝑅$

ω

v

R

x-axis

y-axis
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Conservation of angular momentum.
Sample problem.

• The initial kinetic energy of the system is equal to

𝐾D =
1
2𝑚𝑣

E+
1
2𝐼𝜔F

E =
1
2
𝐼𝑚𝑣E+𝐼E𝜔FE+𝑚E𝑅E𝑣E+𝑚𝑅E𝐼𝜔FE

𝐼 +𝑚𝑅E

• The final kinetic energy of the system is equal to

𝐾G =
H
E 𝐼G𝜔G

E = H
E 𝐼 +𝑚𝑅

E IJKLMN!
MOJI"

E
= H
E
IJKLMN! "

MOJI"

• The change in the kinetic energy is thus equal to

∆𝐾 =
1
2
𝑚𝐼(−2𝑅𝑣𝜔F−𝑣E−𝑅E𝜔FE)

𝐼 +𝑚𝑅E =−
1
2

𝑚𝐼
𝐼 +𝑚𝑅E 𝑣 +𝑅𝜔F E

Cockroach Lazy Susan
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3 Minute 55 Second Intermission. 

• Since paying attention for 1 hour 
and 15 minutes is hard when the 
topic is physics, let’s take a 3 
minute 55 second intermission.

• You can:
• Stretch out.
• Talk to your neighbors.
• Ask me a quick question.
• Enjoy the fantastic music.
• Solve a WeBWorK problem.
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Conservation and angular momentum at the 
atomic and nuclear level.

• Particles at the atomic and nuclear level have two different 
forms of angular momentum:
• Translational angular momentum: the angular momentum associated 

with the "orbital" motion of the particles.  This angular momentum is 
also called the orbital angular momentum.

• Rotational angular momentum: the angular momentum associated 
with the rotation of the particles around their symmetry axis.  This 
angular momentum is called the spin of the particle.

• The angular momentum at the atomic and nuclear level is 
quantized; its projection along the x, y, or z axis is an integer 
or half-integer multiple of ℏ = ℎ/2𝜋.
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Implications of quantization of angular 
momentum.

• Consider the "classical" picture of 
the motion of electrons in atoms.

• If the angular momentum is a 
integer multiple ofℏ , the orbit 
must be such that

𝑟𝑝 = 𝑁ℏ

• In order to carry out circular 
motion, the force on the electron 
must be equal to

1
4𝜋𝜀%

𝑒$

𝑟$
=
𝑚𝑣$

𝑟
=
𝑝$

𝑚𝑟
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Implications of quantization of angular 
momentum.

• Eliminating p from the force 
equation shows us that

1
4𝜋𝜀%

𝑒$

𝑟$
=
𝑝$

𝑚𝑟
=

𝑁ℏ
𝑟

$

𝑚𝑟
=
𝑁$ℏ$

𝑚𝑟)

• This equation can be used to 
determine the radius r:

𝑟 = 4𝜋𝜀%
𝑁$ℏ$

𝑚𝑒$
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Implications of quantization of angular 
momentum.

• The quantization of r results in a quantization of both the 
potential and the kinetic energy of the electron:

𝑈 =−
1

4𝜋𝜀F
𝑒E

𝑟 = −
1

4𝜋𝜀F

E 𝑚𝑒W

𝑁EℏE

𝐾 =
1
2
𝑝E

𝑚 =
1
2𝑚

𝑁EℏE

𝑟E =
1
2

1
4𝜋𝜀F

E 𝑚𝑒W

𝑁EℏE

• The total energy of the electron is thus equal to

𝐸 = 𝐾+𝑈 =−
1
2

1
4𝜋𝜀F

E 𝑚𝑒W

𝑁EℏE =−
13.6
𝑁E 	eV
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Implications of quantization of angular 
momentum.

• The energy levels of an electron in the hydrogen atom 
exactly match the levels predicted using this simple model, 
and the quantization of the energy levels is thus a direct 
consequence of the quantization of angular momentum.

• In addition to the orbital angular momentum of the electrons 
in the atom, they also poses spin.  The projection of the spin 
of the electron on a particular axis will be either +H

Eℏ	or 
− H
Eℏ.  It will never be zero.  The electron is said to be a 

spin H
E particle.

• Many other particles, such as muons, neutrinos, and quarks, 
are spin H

E particles.
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Implications of quantization of angular 
momentum.

• Since quarks are the building blocks of hadrons, we also 
expect that hadrons have a well-defined spin.
• Hadrons that contain three quarks can either be spin *

$
 or spin )

$
.

• Hadrons that contain two quarks can either be spin 0 or spin 1.

• The total spin of a particle limits how particles can be 
distributed across the various energy levels of the system.
• If the spin is a half integer, the particle is called a Fermion, and it 

must obey the Pauli exclusion principle (two fermions can not be in 
the exact same quantum state).

• If the spin is an integer, the particle is called a Boson, and it is not 
subject to the Pauli exclusion principle (there is not limit to the 
number of Bosons that can be in the exact same quantum state).
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The building blocks of matter:
combining quarks.

http://particleadventure.org/particleadventure/frameless/chart.html
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The building blocks of matter:
grouped according to spin.

http://particleadventure.org/particleadventure/frameless/chart.html

24



9

Frank L. H. Wolfs Department of Physics and Astronomy, University of Rochester, Lecture 19, Page 25

Implications of quantization of angular 
momentum.

• A final remark (before talking about precession):

 The spin of macroscopic objects will also be quantized, but 
the difference between different spin states is so small that it 
is impossible to observed effects of this quantization.
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Precession.

• Consider a rotating rigid object 
spinning around its symmetry 
axis.

• The object carries a certain 
angular momentum L.

• Consider what will happen when 
the object is balanced on the tip 
of its axis (which makes an angle 
𝜃 with the horizontal plane).

• The gravitational force, which is 
an external force, will generate a 
toques with respect of the tip of 
the axis.

mg

θ

L
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Precession.

• The external torque is equal to

𝜏 = 𝑟×�⃗� = 𝑟 �⃗� sin
𝜋
2
+ 𝜃

= 𝑀𝑔𝑟	cos(𝜃)

• The external torque causes a change 
in the angular momentum:

𝑑𝐿 = 𝜏𝑑𝑡
• Thus:

• The change in the angular momentum 
points in the same direction as the 
direction of the torque.

• The torque will thus change the 
direction of 𝐿 but not its magnitude.

mg

θ

L
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Precession.

• The effect of the torque can be 
visualized by looking at the 
motion of the projection of the 
angular momentum in the xy 
plane.

• The angle of rotation of the 
projection of the angular 
momentum vector when the 
angular momentum changes by 
𝑑𝐿 is equal to

𝑑𝜙 =
𝑑𝐿

𝐿	cos(𝜃)
=
𝑀𝑔𝑟 cos 𝜃 𝑑𝑡
𝐿	cos(𝜃)

=
𝑀𝑔𝑟𝑑𝑡
𝐿
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Precession.

• Since the projection of the 
angular momentum during the 
time interval dt rotates by an 
angle 𝑑𝜙, we can calculate the 
rate of precession:

Ω =
𝑑𝜙
𝑑𝑡

=
𝑀𝑔𝑟
𝐿

=
𝑀𝑔𝑟
𝐼𝜔

• We conclude the following:
• The rate of precessions does not 

depend on the angle 𝜃.
• The rate of precession decreases 

when the angular momentum 
increases.
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Up next: equilibrium.
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